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Abstract: The Earth’s land-covers are exposed to several types of environmental changes, issued by 14 
either human activities or natural disasters. On 11 March 2011, an earthquake occurred at about 130 15 
km of the east coast of Sendai City in Japan. This earthquake has been followed by a huge tsunami, 16 
which caused devastating damages over the wide areas in the eastern coastlines of Japan. Due to 17 
the occurrence of natural disasters across the world, there is a strong need to develop an automated 18 
algorithm for fast and accurate extraction of changed landscapes within the affected areas. Such 19 
techniques can accelerate the process of strategic planning and primary services for people to move 20 
into shelters, damage assessment, as well as risk management during a crisis. Therefore, a variety 21 
of change detection (CD) techniques has been previously developed, based on various requirements 22 
and conditions. However, the selection of the most suitable method for change detection is not easy 23 
in practice. To our best of knowledge, there is no existing CD approach that is both optimal and 24 
applicable in the cases of using a variety of optics and radar remote sensing images. In order to 25 
resolve these problems, an automated CD method based on Support Vector Data Description 26 
(SVDD) classifier is proposed. This method used the information contents of radar and optical data 27 
simultaneously by decision level fusing of obtained change maps from these data. In order to 28 
evaluate the efficiency of the proposed method and extract the damaged areas, the Sendai 2011’s 29 
tsunami was considered. Various optical and radar remote sensing images from before and after of 30 
Sendai 2011’s tsunami acquired by IKONOS and Radarsat-2 were used. The results confirmed the 31 
fundamental role and potential of using both optical and radar data for natural hazard damage 32 
detection applications. 33 
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imageries 35 
 36 

1. Introduction 37 

Due to the occurrence of natural disasters across the world, there is a strong need to develop an 38 
automated algorithm for fast and accurate extraction of changed landscapes within the affected areas. 39 
Such techniques can accelerate the process of strategic planning services for people to move into 40 
shelters, damage assessment, as well as risk management during a crisis [1,2]. Therefore, several 41 
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methods have been developed for this purpose and efforts were put in considering low and medium 42 
resolution imagery [3]. Changes detection in multi-temporal remote sensing images of high spatial 43 
resolution is challenging. In the case of low resolution images, change detection techniques are mostly 44 
based on analysis of spectral and statistical information [4]. Such methods may be efficient for broad-45 
scale images or large-scale changes for reason that noise caused by registration errors and radiometric 46 
variation can be restricted to low level compared to real changes by preprocessing or other means. 47 
But for high resolution images, there are many new problems to be concerned in design of change 48 
detection algorithms. First, accurate registration (e.g., half or quarter pixel accuracy) of different 49 
images is not easily achieved. Second, variations of lighting and environmental conditions are rather 50 
locally and diversified between different images, such as shadow of buildings [4]. Besides these, there 51 
are more imaging noises in high spatial resolution images. Finally, in many applications, users desire 52 
to detect small size changes including lines, buildings, bridges and other man-made targets. 53 
However, the performances of current change detection methods are not satisfying for high spatial 54 
resolution remote sensing images in both effect, efficiency and false alarm rates are relatively high 55 
[4]. 56 

Recently, Support Vector Machines (SVM) and Support Vector Data Description (SVDD) 57 
classifiers have demonstrated their effectiveness in several remote sensing applications. The success 58 
of such approaches is related to the intrinsic properties of this classifiers: can handle ill-posed 59 
problems and to the curse of dimensionality, provides robust sparse solutions and delineates 60 
nonlinear decision boundaries between the classes [3]. In order to take advantage of the large amount 61 
of information present in the multispectral difference image, we formulate the change detection 62 
problem in the higher dimensional feature space [5]. As all kernel methods, SVMs and SVDD show 63 
some interesting advantages over other techniques, like intrinsic regularization and robustness to 64 
noise and high dimensionality [5], [6], [7], [8], [9], [10]. On the other hand, specify the threshold 65 
requires prior knowledge of the nature of the data, the study area, skilled user and often is associated 66 
with a large error.  67 

As mentioned, in high spatial resolution images the underlying class distributions are often 68 
strongly overlapped, resulting in hardly classifiable pixels even using robust methods as SVM. The 69 
high within-class variances as well as the low between-class distance, due to the low spectral 70 
information, increase the need for approaches that enhance separability between the different classes. 71 
On the other hand, in most of the above studies, the benefits of combining optical and radar images 72 
have not been used. While radar images with different polarizations contribute greatly to the 73 
separation of complex land cover classes. Radar images are sensitive to scattering processes and are 74 
affected by the shape, direction, and dielectric properties of scatterers. 75 

In order to solve these problems, in this paper, an object-level and kernel-based change detection 76 
method based on the integration of object-based image analysis (OBIA) and support vector data 77 
description (SVDD) method was proposed. This framework is indeed an automatic CD framework 78 
for either optical or radar remote sensing data, where users need easy and rapid access to real-time 79 
geospatial information to support disaster management. This proposed kernel-based method leads 80 
to a strong decrease in the false alarm rate (classifying a background pixel as a change class), and a 81 
slight accuracy improvement in the generated change map. This method used the information 82 
contents of radar and optical data simultaneously by using the decision level fusing of obtained 83 
change maps from these data. 84 

2. Experiments  85 

2.1. Case Study and Remote Sensing Data 86 

In order to assess the effectiveness of the proposed approach, the Sendai 2011’s tsunami was 87 
considered as the case study, where multi-temporal optical and radar images were collected by a 88 
variety of satellite remote sensing sensors. These data sets have been acquired before and after this 89 
natural disaster. In Japan, on March 11, 2011, at 05:46:23 UTC, an earthquake occurred near the 90 
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subduction plate boundary between the Pacific and North American plates. The epicenter has been 91 
located at about 130 km east of Sendai City at a depth of about 32 km. This earthquake has been 92 
followed by a tsunami caused devastating damages over wide areas of the East Japan, particularly 93 
along with the coastline of the Pacific Ocean [11]. In order to extract the destroyed areas, we 94 
considered two different data sets acquired by both optical and radar sensors, i.e. IKONOS and 95 
Radarsat-2. The geographical location and the extent of the study area over Sendai, Japan is shown 96 
in Figure 1 (a).  97 

 
(a) 

 
(b) 

Figure 1. (a)The geographical location and the extent of the study area over Sendai, Japan and (b) the 98 
overview of proposed decision fusion based change detection method. 99 

The acquisition dates, spectral and spatial resolutions of these image data sets from Sendai, 100 
Japan are presented in Table 1. 101 

 102 

Table 1. The acquisition dates, spectral and spatial resolutions of imageries from Sendai, Japan. 103 

Dataset 
Pre-change 

acquisition 

Post-event 

acquisition 

Bands 

Specifications 

Spatial 

Resolution (m) 

Sendai, 

Japan 

IKONOS Dec 11, 2010 Mar 28, 2011 R,G,B, NIR 3.2 

Radarsat-

2 
Mar 17, 2010  Mar 12, 2011 C-Band (HH) 6.25 

 104 
Optical and radar remote sensing images from before and after of Sendai 2011’s tsunami 105 

acquired by Radarsat-2 and IKONOS are illustrated in Figure 2. 106 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. The sigma0 and true color images provided by Radarsat-2 and IKONOS imageries from (a,c) 107 
before and (b,d) after of Sendai 2011’s tsunami, respectively. 108 

2.2. Methodology 109 

Proposed decision fusion based CD framework consists of several steps, including: (a) Pre-110 
processing step, (b) Object-based classification, (c) kernel parameter estimation, (d) one class classifier 111 
and (e) change maps fusion. In the first step of proposed CD method, the geometric and the 112 
radiometric pre-processing performed on the multi-temporal images. In each case study, optical 113 
multi-temporal images were co-registered manually to each other, while radar images were co-114 
registered automatically using an angular histogram based co-registration method [12]. Clouds in 115 
optical images were symmetrically masked. Figure 1 (b) presents the flowchart of this automatic 116 
decision-based change detection method. The mathematical details for each of the steps in the 117 
proposed CD framework are presented in [14,15]. 118 

 In the second step, the pre-change image was classified using an object-based support vector 119 
machines (SVM) classifier. For each class of interest in this image, SVDD classifier was then trained 120 
using randomly selected samples. At this stage, the SVDD separation function, in the form of a hyper-121 
sphere in high dimensional space, covers the pixels of this class of interest. All corresponding pixels 122 
in the post-event image enter then into the SVDD classifier as unknown pixels. If the unknown pixel 123 
in the post-event image does not belong to the no-change (target) class, it will be placed outside of 124 
the hyper-sphere and considered as a changed pixel or outlier. On the other hand, if a pixel is placed 125 
inside this hyper-sphere, it will be a no-changed class. This process is repeated for all classes in both 126 
optical and radar images until all pixels in post-event image are classified and final change map is 127 
produced [13].  128 

In the final step, the produced change map from optical and radar images were fused together 129 
using decision based fusion method such as voting strategies. These strategies can be applied to a 130 
multiple classifier system assuming that each classifier gives a single class label as an output. There 131 
are a number of approaches to combination of such uncertain information units in order to obtain the 132 
best final decision. However, they all lead to the generalised voting definition. In this paper enhanced 133 
majority voting method was used for fusing the change maps obtained from optical and radar 134 
imageries. In simple majority voting method the final change and no-chnage classes are chosen when 135 
all SVDD classifiers produce the same output. But in our proposed enhanced majority voting method, 136 
in the areas that SVDD classifiers produce the different output, the spectral similarity measure 137 
between multitempoarl radar and optical imageries were calculated. If this criteria for each pixel was 138 
lower than predefined threshold, the corresponding pixels assign to change class and vise versa.  139 

3. Results and Discussion 140 
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In order to analyze the accuracy of the proposed decision fusion based CD method, the test data 141 
have been extracted from the optical images and google earth high resolution images by visually 142 
comparing the multi-temporal images. These samples are selected so that they spread over the entire 143 
area that the effects of sun angle and topography should be carefully considered in the analysis. Two 144 
criteria, i.e. kappa coefficient of agreement and Overall Accuracy (O.A.) extracted from the confusion 145 
matrix, were used for quantitative accuracy analysis of the results. Figure 3 show the change maps 146 
obtained from proposed object-based CD method for IKONOS and Radarsat-2 imageries from 147 
Sendai, Japan. The blue color indicates the change class.  148 

 
(a) 

 
(b) (c) 

Figure 3. Change maps obtained from proposed CD method for (a) IKONOS imagery, (b) Radarsat-2 149 
imagery (c) decision fusion of change maps obtained from IKONOS and Radarsat-2 imageries over 150 
Sendai, Japan. IKONOS and Radarsat-2 Satellite images, courtesy of the Digital Globe Foundation 151 
and MacDonald, Dettwiler and Associates Ltd. Geospatial Service respectively. 152 

The results show that, when using optical or radar imageries separately, leads to increase the 153 
false alarm rate in the change maps. In this case, flooded areas have not been fully identified, due to 154 
the inability of optical data to separate flooded areas from other areas. Using only radar data to detect 155 
flooded areas, due to the complexity of the region and the proximity of the change classes and the 156 
limitation of input information to the proposed CD algorithm, leads to the inability to detect all 157 
flooded areas as well as the misdiagnosis of flooded areas in some agricultural areas and bare land. 158 

As can be seen in Figure 3 (c), the noise level in the change maps is very low and the proposed 159 
fusion based CD algorithm is completely succeeded to separate flooded areas from other areas. It is 160 
clear that by fusing the change maps obtained from optical and radar imageries, changed areas are 161 
well extracted. The results got limited isolated pixels and they were less noisy in essence and better 162 
results have been achieved. As well as the areas devastated by the earthquake and flood-affected 163 
areas have been extracted with high accuracy. The exploitation of optical images together with radar 164 
data allows to obtain a sharp boundary between change and no-change area, which is the basis of the 165 
statistical approach to estimate the changes. Indeed, an accurate knowledge of the homogeneous 166 
regions given by the joint segmentation allows a better exploitation of the entire available information 167 
in pattern changes detection phase. The accuracy analysis of proposed decision fusion based CD 168 
method for Sendai are presented in Table 2. 169 

Table 2. The accuracy analysis of proposed CD method on Sendai case study. 170 

Acc. Criteria 
Tsunami, Sendai, Japan  

IKONOS Radarsat-2 Fused change maps 

Kappa 0.85 0.82 0.91 
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OA 93.61 92.60 96.37 

 171 
For optical dataset, the accuracy analysis of proposed CD method showed that, the best results 172 

were obtained by using the RBF kernel function. For C-band HH intensity image of Radarsat-2 173 
imagery, the best results were obtained by using the sigmoid kernel function. The fusion of change 174 
maps obtained from optical and radar imageries always provides better results than without 175 
completing the fusion phase. 176 

Several conclusions can be deduced from the accuracy assessment of proposed CD method. 177 
Preliminary results show that objects may be well suited to quantify changes when only one class of 178 
the landscape features is the research emphasis. Therefore, in order to mapping the flooded areas, 179 
using radar imageries are more appropriate choice. As high resolution optical imageries are a more 180 
appropriate choice for extracting the earthquake-affected and flooded-affected in builtup and crop 181 
lands areas. Therefore, it is suggested that in order to explore the environmental changes caused by 182 
natural disasters, integration of optical and radar imageries to be used. 183 

There are several reasons that account for the superiority of the object and fusion based CD 184 
approach. First, in this classification step, the proposed algorithm is able to extract the boundaries of 185 
changed (damage or flooded) areas from the adjacent no-changed areas. This allows the changed 186 
areas to be processed as homogeneous objects, instead of individual pixels. Second, by fusion of 187 
optical and radar data, the objects then have spectral, textural, spatial, contextual patterns and 188 
backscatter information that can be used to aid in the CD process. By integrating the change maps 189 
obtained from optical and radar imageries, a CD approach can detect the various land cover change 190 
on the ground. 191 

4. Conclusions  192 

In this paper, a decision fusion based CD method at object-level is presented for change detection 193 
from both optical and radar remotely sensed data over the 2011’s Sendai, Japan. This proposed 194 
method shows great flexibility for the problem of change detection by finding nonlinear solutions to 195 
the problem. This method aims at exploiting both the high information content available with the 196 
radar imageries and the high level of spectral information available even in a multiband optical 197 
image. The proposed method is largely automated and was small influenced by some of the errors 198 
issued by the classification process. In addition, all the change detection analyses are in object-level 199 
and therefore the obtained change maps have lower level of noise and the boundary between the 200 
change and no-change classes have high contrast.  201 

Experimental results showed that, the proposed CD approach leads to an acceptable level of 202 
accuracy for both optical and radar imageries. The results confirmed the fundamental role and 203 
potential of using both optical and radar data for natural hazard damage detection applications. The 204 
microwave signals have high sensitivity to water content of wetland and flooded areas which 205 
increase the intensity of the backscatter signal. Consequently, radar sensors have high potential in 206 
detecting environmental changes during natural disasters with adverse weather conditions. In future 207 
research, efforts will be on the integration of various remote sensing sensor types using information 208 
level and feature level methods for multiple change detetcion. Thus more accurate change map and 209 
complementary information is achievable from this kind of high level fusion framework in natural 210 
hazard damage detection application. 211 
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