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Abstract: Numerical studies have been conducted based on the recently published Deformation 

Field Theory. Effects of pulling rates on displacement waves and volume expansion waves are 

analyzed in a finite element model (FEM) of a solid experiencing a uni-axial tensile load. Without 

relying on empirical data, the model’s numerical results demonstrate empirically known concepts 

that a fracture occurs more easily when the pulling rate is high, and the direction of external load is 

reversed. 
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1. Introduction 

The majority of conventional fracture mechanics analyses begin with a crack-tip already 

introduced in the model or specimen [1,2]. In strength of materials, stress strain curves are designed 

mostly from empirical methods often associated with a specific strain rate. Neither approach 

predicts where and when a fracture will occur in a solid, until a crack appears. However, 

Deformation Field Theory [3,4] provides a physics based theoretical framework that describes all 

stages of deformation comprehensively. Within this same theoretical foundation, Deformation Field 

Theory derives field equations that describe the local deformation behavior as wave dynamics. Thus, 

we can describe deformation in solids, in terms of wave dynamics of deformation fields. When 

studying deformation as waves propagating through materials, we can provide a thorough analysis 

of the translational and rotational dynamics a solid is experiencing. 

In this study we use Deformation Field Theory to model the effect of pulling rates on the 

deformation behavior of a specimen. Empirically it is well known that the pulling rate alters the 

ductile-brittle transition behavior of steel [5,6]. We propose that when a solid is experiencing a 

uni-axial tensile load at a strain rate, such as        s-1, a faster pulling rate causes the material to 

undergo more concentrated volume expansion. From the Deformation Field Theory perspective, the 

deformation wave velocity, of a solid experiencing plastic deformation, does not depend on the 

pulling rate. Consequently, if the pulling rate is slow the material has time to redistribute the stress 

via wave propagation. Conversely, if the pulling rate is fast the material does not have time to 

redistribute the stress via wave propagation, leading to fracture more easily. 

We developed a finite element model (FEM) of a solid experiencing a uni-axial tensile load, 

studying three pulling cases; nominal (       s-1 in strain rate), and comparatively fast and slow. 

Using the field equations of Deformation Field Theory, we derived an equation of motion, expressed 

it in the form of a wave equation, and solved it as a two-dimensional partial differential equation, 

over the area of the modeled specimen. We introduced a new parameter,  , to describe the degree of 

plastic deformation [7]. Without using empirical data acquired from stress strain analysis, our model 
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can demonstrate deformation concepts already known in a phenomenological sense. Specifically, 

fast pulling tends to tear solid objects more easily and often a fracture occurs when the direction of 

the applied force is reversed. 

2. Field theory of deformation and fracture 

2.1. Field equations 

Details of the present field theory can be found elsewhere [3, 4]. In short, this theory describes 

all stages of deformation based on two postulates. The first postulate is that at any stage of 

deformation it is possible to find local regions in solids where the deformation obeys the law of liner 

elasticity (Hooke’s law). Those local regions are called the deformation structural elements. The 

second postulate is that nonlinear dynamics in the plastic regime can be formulated through a 

compensation field that logically connects deformation structural elements so that Hooke’s law can 

be satisfied at the global level. The irreversibility in the plastic regime is described through energy 

dissipative interaction between the deformation structural element and the compensation field. 

Fracture is characterized as the final stage of deformation where the compensation field is unable to 

connect deformation structural elements, and therefore the solid is no longer a continuum medium.  

Hooke’s law is an orientation preserving law [8] as the elastic force and resultant displacement 

6are parallel to each other. Therefore, in order to describe deformation with Hooke’s law at the 

global level, it is necessary to align all deformation structural elements in the same direction. The 

role of the compensation field is to make this orientation recovering alignment. This effect is 

conveniently expressed as a vector potential. With this formalism, solids under deformation can be 

viewed as being made up with a number of elastic entities connected with the vector potential.  

The present field theory identifies Lagrangian associated with the local elastic energy and 

potential energy associated with the vector potential. By applying the Lagrangian principle, the 

theory derives the following set of field equations.   

        , (1) 

     
     

  
  (2) 

        
 

  
   

  
      (3) 

        . (4) 

Apparently, the above field equations yield wave solutions. This is the source of the wave 

dynamics of deformation fields. In the field equations,    is the temporal derivative of displacement 

   at a given point in the global coordinate system (      ),      is the rotation (         ), and   is the 

wave velocity.    and    are the quantities that describe temporal and spatial interaction of the local 

elastic dynamics with the compensation field. Equation (3) can be put in the following form, which 

explicitly indicates that this equation is in fact the equation of motion for the unit volume whose 

mass is  .  

 
    

   
                 (5) 

In the form of Equation (5),           and     can be interpreted as representing shear and 

longitudinal resistant forces that the solid exerts in response to the external load. Each regime of 

deformation can be characterized by a specific form of the resistant force as indicated in Table 1, and 

briefly described below. 

1. Linear elastic regime 

For this regime, material rotation      represents rigid-body rotation. In other words, the entire 

object is represented by the same      vector, hence,         . The elastic force is proportional 

to the volume expansion via the Lamé’s parameters   and  . 



Proceedings 2018, 2, x 3 of 6 

 

2. Elasto-plastic regime 1 

In this regime, the number and size of defects become significant, making different parts of the 

object undergo different rotations. Consequently,         . In addition, these defects move 

causing friction against surrounding atoms. This energy dissipative force is expressed via a 

material constant,   , as            . The solid is still under the influence of elastic force, 

            . 

3. Elasto-plastic regime 2 

When deformation advances to the next level, the number and size of defects become so high 

that the solid is no longer under the influence of elastic force,             . However, it is 

still influenced by rotational elastic force,          .   

4. Pre-fracture regime 

When deformation develops further, the shear stress becomes so significant that a so-called 

shear bands appears at the location of maximum shear stress [3]. At this stage,        becomes 

one-dimensional. The elastic force term is due to a higher order term of the Lagrangian, 

representing elastic energy. Note that the equation of motion yields solitary waves in this 

regime. 

Table 1. Resistive force for each regime of deformation  

Deformation regime Resistive force expression 

Linear elastic              

Elasto-plastic 1                                     

Elasto-plastic 2                        

Pre-fracture1 

  
    
   

 
    

       
   
   

 

1 The first term comes from a higher order term of the Lagrangian.   is the Young’s modulus. 

2.1. Wave equations 

From Table 1, the equation of motion (7) for Elasto-plastic 1 regime can be put as follows. 

    

   
         

   

  
  

 

 
      

   

 
         (6) 

 

Similarly, the equation of motion for Elasto-plastic 2 becomes  

    

   
         

   

  
  

 

 
          (7) 

 

The last term of Equation (8) indicates that as deformation develops from Elasto-plastic 1 to 

Elasto-plastic 2, the coefficient of the linear elastic force term changes from     to 0.  This 

indicates that the degree of plastic deformation cab be expressed by parameter   define as follows. 

    

   
         

   

  
  

 

 
       

 

 
         (8) 

Here,   changes from           for Elasto-plastic 1 to     for Elasto-plastic 2. 

 

With the identity                    ,      can be eliminated from Equation (8) can as follows. 
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3. Modeling 
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3.1. Partial differential equation 

In the present study, the above equation of motion is solved as a finite element model (FEM) of 

two-dimensional, partial differential equation. Equation (9) can be viewed as a wave equation of the 

following form. 

    

   
         

   

  
 
 

 
          

 

 
         (10) 

Here          can be viewed as a damping coefficient,     as the square of the wave velocity, and 

                  as the source term. Based on the argument made above, the transition from 

Elasto-plastic 1 to Elasto-plastic 2 in association with the change in   can be viewed as the 

corresponding change in the coefficient of the source term. 

For Elasto-plastic 1,       . According to continuum mechanics,   and   are related via 

Poisson’s ratio,  , as              . With a typical value      , the coefficient of the source 

term in Equation (10) becomes            . For Elasto-plastic 2,     makes the coefficient 

      . With these two coefficients, wave equation (10) can be solved with boundary conditions. 

3.2. Boundary condition 

The upper illustration in Figure 1 shows the specimen with the mesh used for our FEM 

analysis. The left end of the planar specimen is fixed both vertically and horizontally. The right end 

is pulled by a tensile machine with zero vertical freedom. The top and bottom ends are assumed to 

be free. The lower plots in Figure 1 show the three boundary conditions used for the right end.  

 

 

Figure 1. The specimen and three pulling rates used in FEM: (a) slow; (b) intermediate and (c) 

fast pulling rates 

4. Results and Discussions 

In the present study, the focus is on the effect of pulling rate on the wave behaviors for 

Elasto-plastic 2 (    in Equation (10)). Figure 2 shows the computed    (the displacement 

component in line of the external pulling load) waves and       (volume expansion) waves for the 

slow (left column), nominal (middle column) and fast (right column) pulling rates. The top graphs 

are the   -waves and the bottom graphs are the      -waves.  
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Figure 2.   –waves and      –waves observed at three pulling rates 

The following observations can be made.  

1. The effect of pulling rate is more prominent in the volume expansion waves than the 

displacement waves. This indicates that the volume expansion part of                

     is more sensitive to the pulling rate. 

2. The effect of pulling rate is more prominent in the second half (the descending half of Figure 

2) than the first half (the ascending half of Figure 1). Fracture is induced by strain 

concentration. This observation indicates that fracture occurs when the direction of the 

applied force is reversed. It also indicates that the deformation dynamics is more influential 

to strain concentration than the average strain. Notice that the pulling is symmetric in time 

so that the average strain is symmetric in the ascending and descending halves.   

3. The fast pulling case indicates more concentrated volume expansion. This can be interpreted 

as follows. When pulled slowly, the solid has time to redistribute the volume expansion. 

Conversely, when pulled fast, at a certain peak in    or      is more prominent than the 

others. In other words, the solid tends to have strain concentration more easily when pulled 

faster. This and Observation 2 are consistent with our intuition that when we try to break a 

solid object we tend to apply a force in one direction and reverse the direction fast.  

 

The above observations indicate the interaction between the deformation waves and the end of 

the solid that the uni-axial tensile load is applied. Figure 3 shows the motion the largest peak of the 

  -wave as a function of time. It is clearly seen that the wave’s motion deviates from linearity more 

clearly when pulled slowly and in the descending part of the pulling action. Notice that the wave 

equation (10) uses a constant wave velocity (    ). Therefore, without the interaction with the 

pulling at the boundary, the motion of the peak should be constant. The dashed line in the middle 

plot of Figure 3 indicates the constant velocity.  
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Figure 3. Peak location of   –waves as a function of time  

5. Conclusion 

The present study demonstrates, via wave dynamics of deformation, empirically known 

concepts that it is more likely fast pulling leads to a fracture and that a fracture tends to occur when 

the direction of the applied load changes. Although the current FEM does not model the pre-fracture 

regime (Table 1), it is possible to argue that the prominent peak observed in the fast pulling case 

transforms to a solitary wave. Deformation Field Theory predicts that a fracture occurs when and 

where a solitary wave stops travelling. Modeling of the transition from a continuous wave to a 

solitary wave and of the mechanism that makes a solitary wave stationary are two most important 

subjects of our future study.   
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