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Abstract:

Poly(urethane-urea)  (PUU) has been infused into ultrahigh volume fraction carbon
nanotube (CNT) forests using a heat-curable polymer formula. Polymer nanocomposites with
carbon nanotube volume-fractions of 1, 5, 10, 20, and 30% were fabricated by overcoming
densification  and  infusion  obstacles.  These  polymer  nanocomposites  were  nanoindented
quasi-statically and dynamically to discern process-structure-(mechanical) property relations
of polymerizing PUU in such densely-packed CNT forests. A 100× increase in indentation
modulus has been observed, which is attributed not only to CNT reinforcement of the matrix,
but also to molecular interactions in the matrix itself. Quasi-static elastic moduli ranging from
10MPa – 4.5GPa have been recorded. Storage modulus for all materials is found to track well
at loadings of 200Hz, with little effect observed from increasing CNT volume fraction.
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1. Introduction

Hierarchical  composites  comprising  components  of  multiple  length-scales  are  a
promising area of research for the aerospace industry as they offer unparalleled control over
material  architecture.  One  method  for  fabricating  such  materials  is  to  grow a  conformal
coating of carbon nanotubes (CNTs) off of the surfaces of advanced woven fabrics such as
carbon fiber, aluminum oxide, etc.  [1], [2]. An additional level of control can be offered by
engineering the interface between the chosen matrix material and the CNTs. This interphase
region has been shown to be affected by CNT proximity  [3]–[9]. Furthermore, packing and
confinement effects which arise from even moderate CNT volume fractions (Vf’s) give rise to
additional  nanostructure  [10].  To  investigate  the  phenomena  governing  this  interphase,  a
model system of vertically aligned CNT forests has been used, which allows for excellent
control of CNT Vf and dispersion, while eliminating any potentially confounding effects of
more complex hierarchical composites.

The  matrix  material  used  here  is  a  poly(urethane-urea)  (PUU)  which  has  been
investigated previously [11]–[16], and is particularly attractive for its quasi-static and dynamic
mechanical tunability. Moderate interactions have been observed previously with this material
in the presence of aligned CNTs [17], [18], and so a deeper dive into understanding the nature
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of this  interaction and the mechanical implications is  necessary.  Quasi-static and dynamic
nanoindentation results will be presented here.

2. Methods

CNT forests were grown at 1% volume fraction on silicon wafers using atmospheric
pressure chemical vapor deposition. These CNT forests were biaxially densified down to the
requisite dimensions for producing the desired CNT Vf. The densified forests were placed into
silicone  molds  to  confine  the  samples  and  prevent  expansion  during  polymer  infusion.
Poly(urethane-urea) (PUU) prepolymer was synthesized using a blocked-isocyanate, diamine,
and  polyol  identical  to  the  method  outlined  previously  [18].  The  mixed  and  degassed
prepolymer was poured onto the densified CNT forests and heated at atmospheric pressure to
130°C  for  24  hours  per  the  previously  prescribed  cure  cycle  [18].  Two  stoichiometric
variations of PUU were used in the present study: PUU211 and PUU541, where the naming
denotes HDMI:DETA:PTMO ratios.

PUU nanocomposites were made with 1, 5, 10, 20, and 30% CNT Vf. Once samples
were cured, they were removed from the molds and ultra-cryotomed to reveal smooth surfaces
for the purpose of nanoindentation and atomic force microscopy. Sample were prepared so
that  both  the  logitudinal  (L)  and  transverse  (T)  CNT  orientations  could  be  tested
independently in hopes of elucidating the anisotropy inherent to these ordered structures.

Samples were imaged using a Cypher Scanning Probe Microscope. The silicon tip had
a natural  frequency of  70kHz and stiffness  of  2Nm, and was used to  perform alternating
contact mode scans at a rate of 0.6Hz.

Nanoindentation tests were performed using a Hysitron TI950 Triboindenter with a
Berkovich tip. Quasi-static load functions with a 5 sec. ramp to 200μN, 5 sec. hold, and 5 sec.
ramp down were implemented. A 2×2 array of qausi-static indentations was tested resulting in
4 tests per sample. Dynamic load functions with similar times and loads were used, with the
addition of a dynamic amplitude of 3μN at frequencies ranging from 1-200Hz. A 1×3 array of
dynamic indentations was tested resulting in 3 tests per sample.

3. Results & Discussion

The  polymer  nanocomposites  were  found  to  be  highly  anisotropic.  Indentation
modulus and storage modulus data for PUU211 as a function of CNT Vf is found in Figure 1.
Similar plots for the PUU541 materials can be found in Figure 2. The longitudinally-oriented
CNTs increased the indentation modulus from 60MPa in the neat PUU211 to up to 1900MPa
in  the  30% CNT Vf PUU211  PNC.  The  same  material  with  transversely-oriented  CNTs
exhibited a modulus of only 700MPa. The neat PUU541 was shown to have a modulus of
~1300MPa, while PUU541 with 30% CNT Vf  had a modulus of ~4300MPa and 2200MPa in
the longitudinal and transverse orientations respectively.  All materials were found to behave
rate-independently,  though  with  dynamic  storage  moduli  following  a  similar  trend  to
indentation moduli.
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Figure 1: Comparison of quasi-static indentation modulus with 
average storage modulus (at 1Hz) for each PUU211 material. “T”
represents “transverse” tests and “L” represents “longitudinal” 
tests. “E” is used to designate “indentation modulus,” while “E’” 
is used to designate “storage modulus.”

Figure 2: Comparison of quasi-static indentation modulus with 
average storage modulus (at 1Hz) for each PUU541 material. “T”
represents “transverse” tests and “L” represents “longitudinal” 
tests. “E” is used to designate “indentation modulus,” while “E’” 
is used to designate “storage modulus.”
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In the case of each polymer, the 10% Vf displayed a local maximum, while the 20% Vf

CNTs exhibited a reduction in modulus. The AFM images of 10% CNT V f PUU541 PNC
showed a highly-ordered arrangement of nanophases surrounding the CNTs, while 20% CNT
Vf PUU541 PNC was much more amorphous. Examples of these may be found in Figure 3.
The ordering found in the 10% CNT Vf PUU541 PNC is thought  to be a result  of some
optimized packing density at  this CNT Vf.  This appears to be a point which balances the
mobility afforded by low CNT Vf and the PUU hard segment ordering initiated by higher
density CNT forests. At and above 20% Vf CNTs, the PUU is unable to order itself due to the
restriction of such densely-packed CNTs. Though poor ordering and hydrogen-bonding should
proliferate  at  the  30%  CNT Vf,  the  CNTs  are  so  densely  packed  that  their  mechanical
properties dominate material behavior in these materials.

Figure 3: Characteristic AFM: (a) height and (b) phase 
maps for transversely-oriented PUU541 with 10% CNTs. 
(c) height and (d) phase maps for longitudinally-oriented 
PUU541 with 20% CNTs.

4. Conclusions

The  CNTs  were  found  to  have  a  profound  impact  on  the  microscale  mechanical
properties of the PUU polymer nanocomposites, with significant anisotropy. An unexpected
trend  was  observed  with  increasing  CNT  Vf,  which  is  expected  to  arise  from  different
polymerization  mechanisms  governing  each  regime,  giving  rise  to  varied  mechanical
properties.  Mechanical  properties  below 10% Vf are  found  to  be  similar  to  one  another,
suggesting  that  the  mechanical  properties  of  these  materials  is  largely  matrix-dominated.
Around 10% Vf the materials stiffen significantly, which coincides with packed nanophases
seen in AFM. This indicates that some ideal packing has occurred for the ordered and oriented
hard-segments. Poor polymer chain mobility is thought to cause the reduced stiffness at 20%,
and CNT-packing is thought to dominate at 30% Vf.
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