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Abstract: The majority of tunable liquid crystal devices are driven by electric fields. The 10 
performance of such devices can be altered by the presence of small amounts of ions in liquid 11 
crystals. Therefore, the understanding of possible sources of ions in liquid crystal materials is very 12 
critical to a broad range of existing and future applications employing liquid crystals. Recently, 13 
nanomaterials in liquid crystals have emerged as a hot research topic promising for its 14 
implementation in the design of wearable and tunable liquid crystal devices. An analysis of 15 
published results revealed that nanodopants in liquid crystals can act as either ion-capturing agents 16 
or ion-generating objects. In this presentation, a recently developed model of contaminated 17 
nanomaterials is analyzed. Nanoparticle-enabled ion capturing and ion generation regimes in liquid 18 
crystals are discussed within the framework of the proposed model. This model is in a very good 19 
agreement with existing experimental results. Practical implications and future research directions 20 
are also discussed. 21 
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 24 

1. Introduction 25 

A great variety of existing liquid crystal devices relies on reorientation effects when applied 26 
electric fields change the orientation of mesogenic molecules [1]. These devices include liquid crystal 27 
displays (LCD) [2], tunable optical elements such as filters [3], retarders [3], waveplates [4], and lenses 28 
[5], and optical switches [6], to name a few. The performance of the afore-mentioned devices can be 29 
altered by mobile ions, typically present in liquid crystals, through the screening effect [2,7,8]. In the 30 
case of liquid crystal displays, this screening effect can result in an image sticking, image flickering, 31 
reduced voltage holding ration, and overall slow response of the display [2,8]. That is why it is of a 32 
paramount importance to understand possible sources of ion generation in liquid crystals [7,8,9].  33 

Sources of ions in liquid crystals can be of different origin [7,8,9,10]. Ionic species can be 34 
deliberately added to liquid crystals [10,11,12]. Such ionic dopants (for example, tetrabutyl-35 
ammonium tetraphenyl-boride) in liquid crystals were extensively studied back in 1970s [11,12]. 36 
Small traces of ions (metal ions and inorganic anions) in liquid crystals can originate during chemical 37 
synthesis [13,14]. Alignment layers and glue used to seal liquid crystal cells are also important sources 38 
of ions in liquid crystals [15,16,17,18]. External factors such as electric fields [19,20,21,22] and ionizing 39 
radiation [23,24] can enrich liquid crystals with ions. Electrochemical reactions taking place in the 40 
near-electrode areas can also generate ions in liquid crystals [25,26,27]. 41 

Recently, nanomaterials in liquid crystals became a hot research topic with a rapidly increasing 42 
number of publications (more details can be found in numerous review papers [28-38], and collective 43 
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monographs [39,40]). Accumulated research data reviewed in paper [41] indicate that nanomaterials 44 
in liquid crystals can alter the behaviour of ions in liquid crystals. It was reported by different 45 
research groups that carbon-based nano-objects [41,42,43,44], metal [41,45,46,47,48], dielectric 46 
[41,49,50,51,52], semiconductor [41,53,54], ferroelectric [41,55,56,57,58,59,60], and other 47 
nanomaterials [41 and references therein] can change the concentration of ions in liquid crystals. In 48 
many reported cases, nano-objects in liquid crystals can behave as ion-capturing objects thus 49 
decreasing the concentration of mobile ions in liquid crystals [41]. Interestingly, in many other cases, 50 
nanodopants in liquid crystals act as a source of ions increasing the concentration of mobile ions [41].  51 

In an attempt to explain different, even seemingly contradictory reported results, a concept of 52 
contaminated nanomaterials was introduced [61]. In short, nanoparticles were considered 53 
contaminated with ions in liquid crystals prior to dispersing them in liquid crystals [61]. This simple 54 
approach applied to a variety of existing experimental results shows a very good agreement between 55 
the modelled and experimental data [61,62]. By dispersing contaminated nanodopants in liquid 56 
crystals, three different regimes, namely, the ion capturing regime (nanoparticles decrease the 57 
concentration of mobile ions in liquid crystals), the ion releasing or ion generation regime 58 
(nanomaterials increase the concentration of mobile ions in liquid crystals), and no change regime 59 
can be achieved [61]. The model of contaminated nanomaterials was extended to account for several 60 
types of dominant ions in liquid crystals [63,64], for possible temperature-induced effects [65,66], for 61 
weakly-ionized ionic species [67] and for the presence of substrates [68]. In addition, the kinetics of 62 
ion-capturing/ion releasing processes in liquid crystals doped with nanomaterials [69] and ion 63 
trapping coefficients of nanodopants [70] were also discussed.  64 

All these results indicate that, generally, we have to consider nanomaterials as a very important 65 
source of ions or ion traps in liquid crystals [71]. The goal of this conference paper is to summarize 66 
the most important features of the model of contaminated nanomaterials in liquid crystals [61-72] in 67 
a form of a brief tutorial accessible to a broad scientific audience.     68 

2. Results and Discussion 69 

2.1. Model  70 

Consider nanoparticles in a liquid crystal host. In the most general case, these nanoparticles can 71 
be contaminated with ions prior to dispersing them in liquid crystals. To account for this ionic 72 

contamination of nanoparticles, a contamination factor NP  is introduced [61]. It equals a ratio of 73 

the number of surface sites of nanoparticle occupied by ionic contaminants to the total number of all 74 
surface sites of nanoparticle [61]. Typically , the number of surface sites can be characterized by their 75 

surface density 
NP

S . Once contaminated nanoparticles are dispersed in liquid crystals, some 76 

fraction of ions can be released from their surface whereas some fraction of ions present in liquid 77 
crystals can be captured by nanoparticles. To simplify the discussion, consider the case of fully 78 

ionized ionic species characterized by their volume concentration 
  nnn . In this case, the 79 

competition between ion-capturing and ion-releasing processes will result in the change of the 80 
concentration of mobile ions in liquid crystals doped with nanoparticles. In many practical cases, ion-81 
releasing process can be associated with desorption of ions from nanoparticles and ion-capturing 82 
process can be described as adsorption of ions onto surface of nanoparticles. As a result, the following 83 
rate equation (1) can be applied [69]: 84 

  NP

NP

SNPNP

NP

dNP

NP

SNPNP

NP

a AnknAnk
dt

dn
  1   (1) 85 

In this equation, n  is the concentration of mobile ions in liquid crystals doped with 86 

nanoparticles; t  denotes time; NPn is the volume concentration of nanoparticles in liquid crystals; 87 
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NP

S is the afore-mentioned surface density of all adsorption sites of a single nanoparticle; NPA is its 88 

surface area (for simplicity, spherical nanoparticles of a radius NPR  are assumed); NP is the 89 

fractional surface coverage of nanoparticles; 
NP

ak  is the adsorption rate constant; and 
NP

dk  is the 90 

desorption rate constant. In the majority of reported experimental studies, weight concentration of 91 

nanoparticles NP  is used instead of their volume concentration NPn . They are related as 92 

NPNP

LC
NPNP

V
n

1




 where LC ( NP ) is the density of liquid crystals (nanoparticles) and NPV  is 93 

the volume of a single nanoparticle. 94 

The first term of equation (1) accounts for the ion-capturing process whereas the second term 95 
originates from the ion-releasing phenomenon. This equation should be solved considering the 96 
conservation law of the total number of ions (equation (2)): 97 

NP

NP

SNPNPNP

NP

SNPNP AnnAnn  0     (2) 98 

In equation (2), 0n  is the initial concentration of mobile ions in liquid crystals (prior to doping 99 

them with nanomaterials); and NP  is the afore-mentioned contamination factor of nanoparticles. It 100 

accounts for possible contamination of nanodopants with ions [61]. 101 

It should be stressed that equation (1) is an approximation which can be applied to liquid crystals 102 
doped with nanoparticles with certain restrictions discussed in recent papers [64,67,72]. In a general 103 
case, a more rigorous approach based on Boltzmann-Poisson equation should be considered 104 
[73,74,75,76].  105 

Equations (1) -(2) can also be generalized to account for several types of dominant ions in liquid 106 
crystals [63,64]. In the simplest case of two dominant types of fully ionized ionic species characterized 107 

by their volume concentrations 
  111 nnn and 

  222 nnn , the system of equations (3)-(4) 108 

can be used ( 2,1j ; the meaning of physical quantities entering these equations are similar to that 109 

of equations (1)-(2) [61,63,64]):  110 

   NPj

NP

SjNPNP

NP

djNPNP

NP

SjNPNPj

NP

aj

j
AnkAnnk

dt

dn
 211  (3) 111 

NPjNP

NP

SjNPjNPjNP

NP

SjNPj AnnAnn  0  (4) 112 

2.2. Kinetics of ion-capturing and ion-releasing processes  113 

The kinetics of ion-capturing and ion-releasing processes in liquid crystals doped with 114 
nanoparticles was analyzed in a recent paper [69]. This analysis was based on equations (1) -(2) and 115 
the results are shown in Figure 1 [69].  116 
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 117 

Figure 1. (a) The volume concentration of mobile ions n  versus time calculated using different values of the 118 

weight concentration of nanoparticles NP  and their contamination factor NP  (
410NPv (dotted, 119 

dashed, and dotted-dashed curves); 
4103 NPv (solid curve); 

4105 NPv (dashed-dotted-dotted, 120 

short-dashed, and short-dotted curves)). The radius of nanoparticles NPR  is 5 nm. (b) The time constant NP  121 

as a function of the weight concentration of nanoparticles NP  calculated at different values of the nanoparticle 122 

radius NPR  ( nm5NPR (dashed-dotted curve); nm10NPR (dashed curve); nm25NPR (dotted 123 

curve); nm50NPR (solid curve)). Other parameters used in simulations: 
323 m10NPK  , 124 

13 s10 NP

dk , 
218 m108.0 NP

S , 
319

0 m103 n , 9.3LCNP  . Reproduced from 125 

Nanomaterials 2018, 8(2), 59; https://doi.org/10.3390/nano8020059 [69], under the Creative Commons Attribution 126 
License. 127 

According to Figure 1(a), depending on the level of ionic contamination of nanoparticles, three 128 

different regimes can be achieved: the ion releasing regime, 0
dt

dn  (dashed-dotted-dotted, 129 

https://doi.org/10.3390/nano8020059
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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short-dashed, and short-dotted curves); ion capturing regime, 0
dt

dn  (dotted, dashed, and 130 

dashed-dotted curves); and no change regime, 0
dt

dn  (solid curve). The ionic contamination of 131 

nanoparticles quantified by the contamination factor NP  governs the switching between these 132 

regimes. The ion releasing regime is observed if 
C

NPNP   , the ion capturing regime holds true if 133 
C

NPNP   , and no change regime is reached if 
C

NPNP   , where 
C

NP is the critical contamination 134 

factor of nanoparticles. It is defined as 
NP

NPC

NP
Kn

Kn

0

0

1
 where NP

d

NP

a
NP k

k
K  [69]. Figure 1(a) 135 

also indicate that both ion capturing and ion releasing regimes depend on the concentration of 136 
nanoparticles: they are more pronounced if higher concentrations are used. 137 

The time constant NP  characterizing the kinetics of ion-capturing / ion-releasing process 138 

shown in Figure 1(a) can be defined through equation (5): 139 

  00 11)( nnenn NP    (5) 140 

where )0(0  tnn and )(  tnn . In the regime of low surface coverage ( 1NP ) 141 

this time constant is given by equation (6): 142 

 11  NP

SNPNPNP

NP

dNP AnKk   (6) 143 

In the case of spherical nanoparticles of radius NPR , the dependence of the time constant on the 144 

weight concentration of nanodopants is shown in Figure 1(b). As can be seen, by using smaller 145 
nanoparticles and their higher concentrations one can decrease time needed to achieve the steady-146 
state. However, it should be noted that this decrease is diffusion-limited. In other words, equation (6) 147 

is correct as long as DNP   . The characteristic time D  can be estimated by means of equation 148 

(7): 149 

  
3 2

2

6

1

6 nDD

lD
D   (7) 150 

where Dl  is the average distance between mobile ions in liquid crystals, and D  is the 151 

diffusion coefficient of ions. By using typical values (
2010n m-3 and 

1210D  m2/s [13]) this time 152 

can be estimated as 
3108 D s. By comparing it to data shown in Figure 1(b) it can be seen that, 153 

indeed, DNP    . 154 

2.3. Steady-state regime  155 

In the majority of the reported experimental studies, steady-state measurements are performed 156 

( 0
dt

dn
). In regard to the concentration of mobile ions in liquid crystals doped with nanomaterials, 157 

an analysis of possible regimes achieved in such systems was done in paper [61]. Three regimes, 158 
namely, the ion capturing regime (solid curve), ion releasing regime (dashed curve), and no change 159 
regime (dotted curve) are shown in Figure 2 where the concentration of mobile ions in liquid crystals 160 
is plotted as a function of the weight concentration of nanoparticles.  161 
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 162 

Figure 2. The volume concentration of mobile ions n  in liquid crystals versus the weight concentration of 163 

nanoparticles NP  calculated at different values of their contamination factor NP  (
410NPv (solid 164 

curve); 
4103 NPv (dotted curve); and 

4105 NPv (dashed curve)). The radius of nanoparticles 165 

NPR  is 10 nm. Other parameters used in simulations: 
323 m10NPK  , 

218 m108.0 NP

S , 166 
319

0 m103 n , 9.3LCNP  . This image is also posted on Nanowerk Spotlight [77]. 167 

In the case of ion capturing regime, the concentration of mobile ions in liquid crystals decreases 168 

as the weight concentration of nanodopants goes up ( 0
NPd

dn


). This regime is achieved if 169 

C

NPNP   . The ion releasing regime is characterized by the increase in the concentration of mobile 170 

ions with an increase in the weight concentration of nanoparticles ( 0NPddn  ). It is observed if 171 
C

NPNP   .  The concentration of mobile ions in liquid crystals doped with nanoparticles does not 172 

change if 
C

NPNP   . Switching between these three different regimes can be achieved by changing 173 

the level of ionic contamination of nanomaterials NP , the ionic purity of liquid crystals (an initial 174 

concentration of mobile ions 0n ), and by varying materials used in experiments (constant 175 
NP

d

NP

aNP kkK  ) as shown in Table 1 (this table is created using similar table published in paper 176 

[61]). 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 
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Table 1. Ion-capturing, ion-releasing, and no change regimes in liquid crystals doped with 185 
contaminated nanoparticles [61]. 186 

 
Ion-capturing 

regime 
No change regime Ion-releasing regime 

Contamination 

level of 

nanomaterials, 

NP  
0

0

1 nK

nK

NP

NP
NP


  

0

0

1 nK

nK

NP

NP
NP


  

0

0

1 nK

nK

NP

NP
NP


  

Initial 

concentration 

of ions in 

liquid crystals, 

0n  















1
1

1
0

NP

NPK

n



 















1
1

1
0

NP

NPK

n



 















1
1

1
0

NP

NPK

n



 

Constant, 

NPK  














1
1

1

0

NP

NP

n

K



 















1
1

1

0

NP

NP

n

K



 















1
1

1

0

NP

NP

n

K



 

 187 

2.3. Temperature-induced effects  188 

Constants describing ion-capturing (
NP

ak ) and ion-releasing (
NP

dk ) processes in liquid crystals doped 189 

with nanomaterials are temperature-dependent [65,66]. By approximating this temperature 190 
dependence through equations (8)-(9), temperature-induced ionic effects in liquid crystals doped 191 
with nanoparticles can be analysed [65,66]. 192 

 kT
E

a

NP

a

a

ekk


 0  (8) 193 

 kT
E

d

NP

d

d

ekk


 0  (9) 194 

where aE  is the adsorption activation energy; dE  is the desorption activation energy; 
0

ak  and 
0

dk  195 

are pre-exponential factors; 
K

Jk 231038.1  , and T is temperature [65,66]. 196 

By applying equations (8)-(9), constant NPK  can be written as expression (10): 197 

kT
E

NP

NP

d

NP

a
NP eK

k

k
K



 0  (10) 198 

In this equation, 0

0

0
d

aNP

k

k
K   is the pre-exponential factor, and ad EEE   [65,66]. 199 

Temperature dependence )(TKNP  (equation (10)) can result in temperature-induced release of 200 

ions experimentally observed in liquid crystals doped with nanoparticles [65]. Typical dependence 201 
calculated using equations (1), (2), (10) is shown in Figure 3. 202 
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 203 

Figure 3. The volume concentration of mobile ions n  in liquid crystals doped with nanoparticles plotted as a 204 
function of temperature for two cases: (a) 100% pure nanoparticles in liquid crystals; and (b) contaminated 205 

nanoparticles in liquid crystals.  Physical parameters used in simulations: 0NPv  (a) and
4104 NPv206 

(b);
323 m10)293(  KTKNP ; 3.0E eV; 

218 m108.0 NP

S ; 
319

0 m103 n ; 207 

9.3LCNP  . The radius of nanoparticles NPR  is 10 nm. The weight concentration of nanoparticles is 208 

0.01 % (dashed curve) and 0.1% (dotted curve). This image is also posted on Nanowerk Spotlight [78].   209 

Figure 3(a) illustrates the so-called temperature-induced release of ions in liquid crystals doped 210 
with nanoparticles. The concentration of mobile ions in liquid crystals doped with nanomaterials 211 
increases as its temperature goes up. In the case of 100% pure nanodopants, this increase saturates at 212 
higher temperatures approaching an initial concentration of ions in liquid crystals (it means at high 213 
enough temperature nanoparticles lose their ion-capturing properties, see Figure 3(a)). It should be 214 
stressed that if 100% pure nanoparticles are mixed with liquid crystals, the concentration of mobile 215 

ions in such systems is always less or equal the initial concentration: 0)( nTn  . In other words, the 216 

ion-capturing regimes is observed (and it approaches the “no change” regime ( 0)( nTn  ) at 217 

elevated temperatures, Figure 3(a)). On a contrary, the )(Tn dependence of liquid crystals doped 218 

with contaminated nanomaterials, exhibits some interesting features (Figure 3(b)). There are two 219 

distinct regions (Figure 3(b)). At temperatures CTT  the concentration of mobile ions in liquid 220 

crystals doped with nanomaterials is less than the concentration of ions in pristine (without 221 

nanodopants) liquid crystals ( 0)( nTn  ) which corresponds to the ion-capturing regime. Above this 222 

temperature ( CTT  ), an opposite inequality holds true 0)( nTn   which corresponds to the ion-223 

releasing regime (Figure 3(b)). No change regime corresponds to temperature CT . Temperature CT  224 

can be found using equation (11) [65]:  225 
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 NPCNP

NP

TK
n








1)(
0  (11) 226 

Thus, a temperature-induced switching between ion-capturing and ion-releasing regimes can be 227 
achieved in liquid crystals doped with contaminated nanomaterials [65].  228 

Temperature-induced release of ions is observed in systems characterized by positive values of 229 

their parameter 0E . Interestingly, liquid crystals doped with nanoparticles and characterized 230 

by negative values of this parameter ( 0E ) should exhibit an opposite effect, namely, 231 
temperature-induced capturing of ions [66]. This unusual effect was analysed in paper [66].  232 

3. Case studies: a brief survey 233 

The proposed model of contaminated nanoparticles in liquid crystals [61] was successfully 234 
applied to existing experimental data [62,71]. Table 2 provides a summary of the observed 235 
experimental effects and physical parameters used in calculations to achieve a very good agreement 236 
between the model and experiments.  237 

Table 2. Case studies: reported experimental data and physical parameters of the model. 238 

Materials 
Reported 

effects 
Physical parameters 

Anatase ( 2TiO ) 

nanoparticles in nematic 

liquid crystals (E44) 

Ion capturing 

effect [49] 

2310NPK m3; 
4105.1 NP ; 

18108.0 NP

S m-2; 5NPR  nm; 

9.3
LC

NP




 [62]  

Carbon nanotubes 

(CNT) in nematic liquid 

crystals (E7) 

Ion capturing 

effect [42] 

23107.0 NPK m3; 
6105.9 NP ; 

1810NP

S m-2; 5.2CNTR  nm; 

500CNTL nm 6.1
LC

NP




 [62]  

Diamond nanoparticles 

in nematic liquid 

crystals (E7) 

Ion capturing 

effect [43] 

2210NPK m3; 
210NP ; 

171025.1 NP

S m-2; 5NPR  nm; 

3.3
LC

NP




 [62]  

Diamond nanoparticles 

in nematic liquid 

crystals (E7) 

Ion releasing 

effect [43] 

25108.0 NPK m3; 25.0NP ; 

171025.1 NP

S m-2; 5NPR  nm; 

3.3
LC

NP




 [62]  

Graphene nano-flakes 

(GNF) in nematic liquid 

crystals (8OCB) 

Ion capturing 

effect [79] 

23108.0 NPK m3; 
6105.8 NP ; 

181033.0 NP

S m-2; 5GNFR  nm; 

10GNFL nm; 8.1
LC

NP




 [62]  
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Ferroelectric 

nanoparticles ( 3LiNbO ) 

in liquid crystals  

Ion capturing 

effect [55] 

23107 NPK m3; 1075.0NP ; 

18105NP

S m-2; 5.12NPR  nm; 

65.4
LC

NP




 [62]  

Ferroelectric 

nanoparticles ( 3BaTiO ) 

in nematic liquid 

crystals  

Ion capturing 

effect [57] 

20104 NPK m3; 3.0NP ; 
1910NP

S

m-2; 1000NPR  nm; 02.6
LC

NP




 [62]  

Ferroelectric 

nanoparticles ( 3BaTiO ) 

in nematic liquid 

crystals (E44) 

Temperature-

induced 

release of 

ions [58] 

0NP ; 
30

0 1093.1 NPK m3; 4.0E

eV; 
18105NP

S m-2; 20NPR  nm; 

02.6
LC

NP




 [65]  

2TiO  nanoparticles in 

nematic liquid crystals 

(ZhK1282) 

Ion releasing 

effect [51] 

41035.4 NP ; 
23106.1 NPK m3; 

18108.0 NP

S m-2; 25NPR  nm; 

9.3
LC

NP




 [71]  

2TiO  nanoparticles in 

nematic liquid crystals 

(ZhK1282) 

Ion capturing 

effect [51] 

0NP ; 
241065.3 NPK m3; 

18102NP

S m-2; 25NPR  nm; 

9.3
LC

NP




 [71]  

ZnSCdSe /  core/shell 

nanoparticles in nematic 

liquid crystals 

(ZhK1289) 

Ion releasing 

effect [53] 

310379.3 NP ; 
2610NPK m3; 

1810NP

S m-2; 3NPR  nm; 

091.5
LC

NP




 [71]  

67 PSCu  nanoparticles 

in nematic liquid 

crystals (6CB) 

Ion releasing 

effect [52] 

3075.0NP ; 
2310NPK m3; 

18107NP

S m-2; 5.58NPR  nm; 

907.4
LC

NP




 [71]  

 239 

4. Conclusions  240 

Existing experimental results (Table 2) unambiguously show that nanomaterials in liquid 241 
crystals can affect the concentration of ions in different ways. The dispersion of nanomaterials in 242 
liquid crystals can result in the ion capturing effect, ion releasing effect, or the combination of them. 243 
Therefore, nanomaterials in liquid crystals should be considered as new sources of ions or as ion 244 
trapping objects. The model of contaminated nanomaterials in liquid crystals reviewed in this 245 
conference paper can predict both ion capturing and ion releasing (or ion generation) regimes 246 
(Figures 1-3). Moreover, it also predicts a new effect, namely temperature-induced ion capturing 247 
effect [66]. This model is in a very good agreement with reported experimental data (Table 2).  248 

So far, the origin of ionic contamination of nanomaterials is poorly understood. In many practical 249 
cases, this contamination can originate from particular chemical procedures utilized during chemical 250 
synthesis of nano-objects. Ionic contaminants can also originate from the contact of nanomaterials 251 
with environment and due to external factors such as ionizing radiation, high electric fields, excessive 252 
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heating and chemical degradation. The afore-mentioned possible causes of ionic contamination of 253 
nanomaterials are caused by external factors and, therefore, are extrinsic in nature. This type of ionic 254 
contamination is typically characterized by relatively low values of the contamination factor. It can 255 
be reduced or even eliminated by improving physical/chemical procedures used to produce, storage, 256 
and handle nanomaterials. There is also an intrinsic source of ionic contamination of nanoparticles. 257 
For example, self-dissociating nanomaterials can generate ions because of their chemical/physical 258 
composition. In this case, the contamination factor of nanoparticles is relatively high and cannot be 259 
reduced by improving the purification procedure. Interestingly, both types of ionic contamination 260 
(intrinsic and extrinsic) can be successfully analyzed by the model reviewed in this paper. Further 261 
studies are needed to understand mechanisms of ionic contamination of nanomaterials and their 262 
impact on the properties of liquid crystals.  263 
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