
 

1 

Rigid-flexible contact analysis of an inflated membrane 

balloon with various contact conditions 

M. X. Liu1 and X. D. Li1,* 

1 Department of Engineering Mechanics, Tsinghua University, 100084, China,  

Emails: lmxyj0034@163.com and lixide@tsinghua.edu.cn. 
* Correspondence: lixide@tsinghua.edu.cn. 

† Presented at ICEM2018, Brussels, July 4th 

Published:  

Abstract 

Considering the Mooney–Rivlin hyperelastic model, a semi-analytical approach is 

introduced to analyze the rigid–flexible contact behaviors of an inflated membrane 

balloon between two plates with various interface conditions. This approach is based on 

the differential formulation and the coupling property of equilibrium equations are well-

solved. In order to verify the reliability of the proposed theoretical model, an 

experimental test is designed, by which some important contact characteristics and 

patterns (no-slip condition) are obtained. Two special phenomena are observed for the 

meridian stretch ratio with different friction coefficients. One is that the intersection 

points of all curves fall in a small interval and the intersection of any two curves 

represents the same changing rate of the horizontal ordinate, resulting in the maximum 

difference. The other is the dividing point, where the stretch ratio decreases on the left 

of it and increases on the right due to the introduction of friction. These results provide 

solid guidance and support for our understanding of the rigid-flexible contact behaviors 

of an inflated membrane balloon. 

Keywords: Mooney–Rivlin hyperelastic membrane; the differential formulation; stick-

slip condition 

1. Introduction 

As the typical membrane structure, inflated balloon has considerable importance in 

a number of scientific studies and technological applications. On the macro scale, it can 

be used in terrestrial and space structures due to the advantages of light-weight, quick 

and self-deployment, and compact storage properties [1] (Jenkins, 2001). On the micro 

scale, it can be used as animal or plant cell [2] (Moretti et al., 2004).  

The investigations on the contact behaviors of an inflated membrane can be 

summarized as two processes: geometry nonlinearity analysis and boundary condition 

nonlinearity analysis. The geometry nonlinearity is carefully considered by solving the 

membrane inflation problem [3] (Feng and Yang, 1970). Moreover, a lot of works have 

been done to deal with the nonlinearity problem of the boundary condition [4] (Feng and 

Yang, 1973, Johnson, Kendall and Roberts, 1971). Broadly, solution schemes proposed 

to this problem are divided into two categories: finite element analysis and semi-

analytical approach. Based on the finite element method, the membrane large 
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deformation problems, nonlinear static behaviors, inflation and contact characteristics 

are analyzed by Leonard and Verma (1976) [5] and Charrier and Shrivastava (1987) [ 6]. 

On the basis of different contact models (Yang and Feng, 1973; Patil and DasGupta, 

2015) [7], the contact problems are simplified to a set of ordinary differential equations, 

which can be solved by numerical methods. 

In the existing literature, diverse methods are proposed based on the variational 

formulation. The coupled normal adhesive force and tangential friction force will 

increase the difficulty of the solving process. To deal with this problem, a semi-analytical 

method rooted in the differential formulation is introduced to extend the modal of Feng 

and Yang (1973) [8] and more complex contact boundary conditions are studied. 

2. Geometry and constitutive models 

A spherical balloon with uninflated radius 0r  and uniform thickness h  (state I the 

black line) is inflated to radius sr   by pressure 0P   (state II the red line). Then two 

parallel rigid plates are pressed by F  into contact with the balloon (state III the green 

line). Half of the spherical balloon and one rigid plate are shown in Fig. 1. The inflated 

spherical balloon before contact is described by the spherical coordinates ( sr , , ). The 

cylindrical coordinates (  ,  , ) are used for the spherical balloon after contact.  

 

Fig.1 the contact model of an inflated membrane and rigid plates  

The governing differential equations are built for the non-contact region and the 

contact one, separately. 

In the non-contact region: according to the geometric relation, the principal 

stretch ratios for the membrane can be written as ,   . Here, the subscripts   and 

  denote the meridian and circumferential directions. 
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The prime in the foregoing and subsequent equations denotes the derivatives with 

respect to the angle  .  

The structure is considered as the non-moment thin shell, which has no bending 

moment and torsion on the cross section, and the equilibrium differential equations can 

be expressed due to the constitutive relation and the axial symmetry. 
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where nP  = nq  and tP = q  are the external loads acting on the deformed surface in the 

normal and meridian tangential directions. 
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Based on the Mooney-Rivlin hyperplastic constitutive model, the equilibrium 

equations can also be obtained due to the new defined variables: 

'
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In the contact region: for the complex stick-slip contact condition, it becomes the 

frictionless contact condition when the friction coefficient becomes zero. If the friction 

coefficient goes to infinity, it is converted into the no-slip contact condition. Then, this 

contact condition is considered in this paper. Because the friction coefficient is limited, 

material will stick when the interfacial friction is greater than the membrane tension, 

while the others will slip. 
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The equilibrium equation along the meridian tangential direction of the spherical 

balloon in the contact region can be rewritten as 
T TdT

d

  
 


  . Hence, the equilibrium 

condition for the critical sliding state can be obtained. 

3. Results and discussion 

3.1 Experiment verification  

In order to verify the theoretical results, a testing scheme is proposed to measure 

the patterns and some important contact characteristics of the inflated balloon.  

Before the experiment, the speckle pattern on the balloon is reproduced artificially. 

To increase the contrast of the speckle, matte white paint and black paint are sprayed on 

the balloon surface evenly. In the experiment, the balloon with sprayed speckles is placed 

on the workbench and its position is adjusted so that it is on the compression axis. After 

that, the balloon is inflated by the pump. The displacement load is applied to the balloon, 

which can be controlled precisely by the electronic universal testing machine. This load 

is noted down by a ruler on the machine and the internal pressure of the balloon is 
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monitored by the barometer (Fig. 2). The deformations of the balloon are tested using 

the digital image correlation (DIC) technology, which is a reliable mean to measure the 

displacement fields.  

Tab. 1 Material and geometrical parameters 

Parameters Magnitude 

Initial radius (r0) 0.05 (m) 

Thickness of the beam (h) 0.3(mm) 

Young’s modulus of membrane(E) 6 (MPa) 

Poisson’s ratio ( ) 

Stretch ratio before contact ( s ) 

0.47 

3 

 

Fig. 2 setup of the contact experiment  

The maximum displacement of the balloon ( 2
   ) is compared in Tab. 2 and 

deformation contours of the balloon are obviously observed and tested in the in Fig. 3. 

 

Fig. 3 three stages of contact (a) before contact b) just in contact c) in press) 

Tab.2. the experimental and theoretical results of the maximum displacement 

under different displacement load 

 Displacement load (cm) 0.63 2.13 4.25 

maximum 

displacement (
0

l
r ) 

theoretical results 2.05 2.18 2.34 

experimental results 2.08 2.25 2.50 

When the inflated balloon is just in contact to plates, the maximum displacement 

appears in the middle ( 2
   ). The tested deformation (10.4cm) agrees with the 

theoretical result (10.0cm) with an error around 0.33%. When the displacement load is 
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4.25cm, the error reaches to the maximum, which is 6.8%. 

3.2 Theoretical prediction  

As a general case, the results from the stick-slip contact condition are mainly 

discussed in this section.  

For different friction coefficients, the changing trend of the meridian stretch ratio

  with the angle   is shown in Fig.4, where the contact angle is 60 .  

Two special phenomena can be seen in Fig.4. One is that the intersection points of 

all curves fall in a small interval, and the other is the dividing point ( angle 1.05   ). The 

intersection point of any two curves appears in the contact region, which represents that 

material have the same meridian stretch ratio under the conditions with corresponding 

friction coefficients at that point. Moreover, different from the condition of 0f   , a 

dividing point, which is the boundary of contact and non-contact regions, appears when 

friction is introduced.  

 

Fig.4 the changing trend of meridian stretch ratio  with angle in different 

friction coefficient conditions.  

 

Fig.5 a) horizontal ordinate 
0r


 and angle relationship with different friction 

coefficients b) the horizontal ordinate difference 
0r


 between introduced friction 

conditions (different coefficients) and frictionless one 

To better explain the intersection interval in Fig.4, the relationship between the 

horizontal ordinate and angle is counted in Fig.5 a) and the horizontal ordinate difference 

between the introduced friction conditions and the frictionless one is described in Fig.5 

b). In the contact region, the relationship
'

0r


  is satisfied. Then the intersection of 
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any two curves represents the same changing rate of the horizontal ordinate
0r


, resulting 

in the maximum difference at that point.  

Moreover, a step point appears at angle 1.05    in Fig.4, which is corresponding 

to the dividing point between the contact and non-contact regions Fig.5 b). This means 

the changing trend of the meridian stretch ratio is different in the contact and non-contact 

regions, though this stretch ratio changes continuously in these two regions.  

Conclusions 

In this paper, a semi-analytical approach based on the force equivalent method is 

introduced to the Mooney–Rivlin hyperelastic membrane modal to characterize the 

rigid-flexible contact behaviors of an inflated membrane balloon. In the contact region, 

the typical stick-slip condition is considered. The inflatable and contact process can be 

tracked using the proposed model. The patterns and characteristics before contact, just 

in contact and in press can be verified by the experimental tests.  

Considering the particularity of the stick-slip contact condition, the friction plays 

an important role. A small intersection interval appears in the meridian stretch ratio for 

different friction coefficients in the contact region and the horizontal ordinate changing 

ratio of any two conditions with different friction coefficients keeps the same, resulting 

in the maximum difference of this ordinate. Unlike the increasing meridian stretch ratio 

with the increment of the angle when friction coefficient is zero, a dividing point appears 

between the non-contact and contact regions when the friction is introduced. It declines 

in the contact region and increases in the non-contact region because of the interface 

friction, which prevents material of the balloon from sliding to the pole.  
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