
bBASÍLICA DA ESTRELA
hhhhHistory, architecture and location

hhhhBuilding Materials

hhhhStone decay

8Physical weathering forms such as granular 
disintegration, flakes, scales and spalling, prevail 

inside. 
8Chemical weathering forms are, however, also 
present inside and are largely dominated by 
calcite re-precipitation forming large white 
zones.

bbbbMAJOR GOALS:

Figure 1. Seepage waters: plot of the first two principal components or principal axes. Horizontal 

axis is principal component I, vertical axis is principal component II: (a) Variables are shown at 

positions corresponding to their loadings on the first two axes (adapted from [2]); (b) Samples are 

shown at positions corresponding to their scores on the first two axes. In this plot, the numbers and 

the letters in the dot labels stand, respectively, for the year of sampling and the seasons: W, for 

winter; A, for autumn and S, for springtime e (rain is very rare in the summer in Lisbon).

8It is the most relevant 18th century monument in the city of Lisbon, which style with a few 

baroque elements is classified as being neo-classical.

8It is located in a moderately polluted area about 15 km away from the sea.

8It was started in 1779, by order ofQueen Mary I, and finished eleven years later.

8It was built with Jurassic and Cretaceous limestones exploited at Lisbon region. Theses limestones

have:

•several colours (beige, greyish-blue, rose and ochre);
•very little porosity (< 1%);
• very low permeability (from 1.34 x 10-1 (mD) to 4.96 x 10-1 (mD));
• more than 95% of calcium carbonate and less than 3% of silica.

8 The yellowish variety is, however, slightly dolomitic and clayey.

8Physical and chemical analyses were performed on seventeen seepage water samples collected over three years inside the 

church at the elevated choir.
8Cl-, NO3

-, SO4
2-, HCO3

-, CO3
2-, Na+, K+, Ca2+, Mg2+,  and Electrical conductivity (σ), pH and temperature (T, °C) were 

measured on each sample;
8Table 1 gives the basic statistical parameters of the raw data set. This consists of (the) 12 (previously mentioned 
variables) physical and chemical properties (variables, table columns) measured on seventeen samples.

8K+, Na+, Cl-, SO4
2-, HCO3

-, NO3
- and pH are all 

well represented on the plan defined by the first two 
principal eigenvectors, with communality values 

varying, respectively, between 0.95 and 0.80 (Figure 
1a). 

8On the other hand, Ca2+, CO3
2-, Mg2+, T (°C) and 

specific conductivity (σ) are not well represented
on this plan as they plot far from the circle
representing a communality of 1.00. 

8These last variables involving also the third or 

fourth principal components seem thus to be less 

important to explain the overall variability in the 

seepage water samples.

8The first principal eigenvector is strongly and 

positively correlated with K+, Na+, Cl-, HCO3
- and 

NO3
- and negatively correlated with pH.
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bbbbMETHODS

8An extended version of Principal Components Analysis (PCA) approach to monument stone decay phenomena is now 
presented.

8This approach will be used, in this paper, to help data interpretation and also as a first step of a stepwise approach to the 

eigenvector methods of data analysis.

8PCA results combined with rainwater sampling are discussed in the perspective of a nondestructive tool (for the

characterization of alteration of geologic materials in the built environment) as it does not involve the extraction of 

samples from those materials.

8Only the rationale and the general methodological procedures used in PCA will now be presented. 

8The mathematics (theoretical and practical manipulation) and the computational essentials underlying PCA 

implementation, are beyond the scope of this paper (see Davis, J.C., 1986, for details). 

�Data Sampling

Table 1. Raw data set: basic statistical parameters of physical and chemical properties measured on seventeen seepage water samples. The chemical analyses 
are in weight per cent. MAX: maximum value; AV: average (mean);MIN: minimum value; STD: standard deviation.

8PCA is a factor analysis technique designed for interval or ratio data that are measurements made on a continuous 
numerical scale (Davis, J. C., 1986). 
8In general, PCA as any other eigenvalue and eigenvector methods was originally devised to explain the interrelationships
in a large numbers of variables by the presence of a few factors or principal components or axes. 
8If the raw multivariate data matrix has n rows that represent observations/samples and m columns of variables, the n

samples or objects may be regarded as being points located in the m-dimensional space defined by the m variables. 
8PCA has as its main purpose to decompose the larger m-dimensional space (a multivariate set of observations) into a 

smaller p-dimensional one, by computing new, uncorrelated orthogonal components that are linear combination of the 

original variables and losing as less as possible of the variance in the original data set.
8The new components are called principal components of the multivariate data matrix.
8How many factors should be retained, is the question now? The usual assumption is that p < m: we should need only p
factor axes to explain our data.

8The linear transformation of m original variables to p new variables is performed in a fashion that requires that each new 
variable accounts for, successively, as much of the total variance as possible. 
8A general pragmatic approach may consist of extracting only two or three principal components and, then, plot two at a 

time as 2D flat diagrams that are more easily manageable and perceptible dimensions at just one glance. 

8Finally, the principal components have to be interpreted in terms of original variables. (However, sometimes this may not 

be made as easier as we wish).

8A full circle approach from variables to principal components, for reduction in the size of the problem, back to variables
for interpretation of the principal components, is usually used.

82D diagrams of the principal component’s loadings show the correlation among the original variables themselves and also
between these and the principal components analysis axes. 

8On the other hand, projecting the samples scores (samples co-ordinates) onto the first two principal axes (interpreted in terms 

of the original variables according to their loadings in the principal components) some significant insight into the inter-samples 
relationships in the data set could also be obtained. 

8This way, this may help the analyst to explore the inter-variable relationships, the inter-object (similitude) relationships in 

a given data set, as well as the interrelations between the variables and objects with each of the respective principal 
components. 
8As the principal components are linear transformations of the m original variables, we are able to plot PCA scores simply 

by projecting our original observations onto the principal axes. 

�Principal Components Analysis (PCA)

hhhhThe Rational

8The data gathered all over the sampling period form the raw data set that was worked out and analysed using Principal 
Components Analysis (PCA), in this paper. PCA approach was used to help data interpretation.

hhhhGeneral Methodological Algorithm: a simple layout

8Here, only some of the general or basic computational steps usually involved in principal components analysis, as it is, 

supposedly, implemented in several commonly available libraries of computer programs, will be pointed out.
8PCA tries to explore some of the mathematical and computational relationships that exist between a data matrix, its 

matrices of cross-products, and their eigenvalues and eigenvectors.
8As the principal components are nothing more than the eigenvectors of a variance-covariance or a correlations matrix, 
PCA is, then, concerned with finding these axes and measuring their magnitude.
8It starts by extracting the eigenvalues and eigenvectors of a variance-covariance or correlations matrix, and then 

discarding the less important of these.

8The eigenvectors are the coordinates of the principal components axes of the data set and may provide significant insights 
into the structure underlying the data set, yielding the orientations of the principal axes of the cloud of points. 
8The eigenvalues, on the other hand, represent the lengths of the successive principal axes or principal components. That is, 

they represent the amount or proportion of the total variance transported or accounted for by the eigenvectors.
8In general, a PCA implementation may involve only a few steps, starting by computing the matrix of variance-covariance
or correlations. 
8Then it proceeds by extracting the eigenvalues and their associated eigenvectors from the matrix of the cross-products of an 

original raw or transformed data set. (The matrix of the cross-products may be obtained from an original raw or transformed data 

set. The variance-covariance matrix will contain elements of correlations when all the initial raw variables in the data set are 

standardized so they have means of 0.0 and variances of 1.0). (For instance, standardization may be unavoidable if the original 
variables are expressed in different, incompatible units). 
8In a third step, we compute what is called principal component scores by projecting onto the principal components each 

sample or original observation (Principal components loadings are the elements of the eigenvectors that are used to compute the 

scores of observations and they are simply the coefficients of the linear equation which the eigenvector defines (Davis, C. J., 1986).

8A final step in PCA implementation may involve the plotting and interpretation of 2D scatter diagram defined by each pair
of the principal components. By cross-plotting, the variables and the samples are shown at positions representing, respectively, 

their loadings and scores on the principal components. The arc on the diagram is part of a circle representing a communality
of 1.00. The communalities are the amount of variance of each variable retained in the principal components. If a variable
falls on the circle, the two components account for all of its variability. Variables that plot inside the circle are characterized

by variability that is not represented by the two principal components.

bbbbRESULTS AND DISCUSSION
8The matrix of pairwise correlations and the eigenvalues for the first five eigenvectors are given in Table 2. 

8The loadings of the eleven original variables on axis I are plotted against the loadings on axis II, in Figure 1a. 

8The samples are plotted on the score space defined also by the two first principal components (Figure 1b). The samples are 

shown at positions corresponding to their scores on the first two axes.
8The first principal axis contains about 45.2 % of the total variance, whereas the second principal component represents an 

additional 24.7% (both correspond to almost 70.0 % of the total variance of the results from seepage water samples).

Table 2.Matrix of pairwise correlations and the eigenvalues for the first five eigenvectors.
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8Samples projected on to the right side of the scores plot have values for these chemical species higher than their mean 
values. On the left side we find the samples with the highest values of pH.

8The second principal eigenvector is positively correlated with σσσσ, pH, CO3
2-, Ca2+, SO4

2- and negatively with T and Mg2+.
However, this axis does not clearly contribute for the analysis of sample’s position onto this scores plan of the two principal components. 

8Only K+, Na+, Cl-, HCO3
- and NO3

- form one cluster on this factor plan that is, in general, positively correlated with SO4
2-. 

This seems to suggest the same source or process involving the strongly and positively correlated variables forming the cluster
as well as a not very different source and alteration process or possibly a slight combination of other ones involving SO4

2-. 

8Together with pH these variables seem to play a significant role in the characterisation of seepage waters. They explain
most of the variation observed in the chemical composition of the samples, while the other variables, including Ca2+as well, do 

not. This surprisingly secondary role played by Ca2+ is possibly associated with stalactite formation observed inside the church. 

8However, all the variables analysed do not provide enough discrimination of seepage waters to allow sub-classifications
other than richer/poor samples in the content of these variables. 

8Taking into account the sampling period, no time- or seasonal-dependent control of seepage water composition has 

appeared clearly from the analysis of the data. This could reflect a significant uniformity contribution of ion sources and stone 
alteration processes.

8Soluble salts were, in contrast, practically non existent or hardly found. 

8Infiltration of rainwater through the terrace of the church was pointed out as being the main problem of the monument.

bbbbCONCLUSIONS

8The water-rock interaction and environmentally-induced processes, at “Basílica da Estrela”, seem to promote essentially 

the enrichment of seepage waters in K+, Na+, Cl- and HCO3
-. 

8In this case, PCA has produced a result in general agreement with the one obtained by the analysis of the same data set
performed by Figueiredo et al. (2000, 2001, 2007) using a, perhaps, more classical geochemical approach. 

8However, it should be stressed that this kind of multivariate analysis may provide a basis for the management of 

environmental and stone decay data which may, when needed, be combined with other geochemical and petrophysical studies.
8 For instance, PCA may help in the planning of future searching campaign for related studies. Hence PCA can help in non-
destructive studies of stone decay by the study of these samples that represent the product of interaction between pollutants
and stones without sampling the cultural materials.

Variables - Physical and chemical properties 

 
T 

(°C) 
pH 

σ 

(µS/cm) 

HCO3- 

(%) 

CO32- 

(%) 

Cl- 

(%) 

NO3- 

(%) 

SO42-

(%) 

Na+ 

(%) 

K+  

(%) 

Ca2+ 

(%) 

Mg2+ 

(%) 

MAX 25.0 11.7 1424.0 310.6 163.7 67.4 20.5 29.9 122.5 330.0 46.5 0.20 

AV 19.5 10.3 722.4 111.0 98.5 34.9 9.4 9.1 67.6 177.9 4.4 0.06 

MIN 16.7 8.2 100.4 4.0 1.2 23.7 0.00 0.00 41.0 115.0 0.7 0.00 

STD 2.3 0.8 305.9 93.2 36.1 11.8 6.0 7.1 22.5 58.2 10.9 0.06 

 

 T pH σ HCO3- CO32- Cl- NO3- SO42- Na+ K+ Ca2+ Mg2+ 

T 1.00            

pH -0.35 1.00           

σ -0.23 0.20 1.00          

HCO3- -0.08 -0.62 0.07 1.00         

CO32- -0.26 0.58 0.24 0.05 1.00        

Cl- -0.15 -0.40 0.32 0.90 0.22 1.00       

NO3- 0.16 -0.55 0.29 0.72 0.04 0.78 1.00      

SO42- -0.39 -0.01 0.65 0.56 0.41 0.67 0.48 1.00     

Na+ -0.14 -0.54 0.27 0.87 0.05 0.86 0.81 0.63 1.00    

K+ -0.10 -0.49 0.31 0.86 0.18 0.94 0.86 0.66 0.90 1.00   

Ca2+ -0.28 0.45 0.58 -0.25 0.07 -0.19 -0.22 0.28 -0.13 -0.23 1.00  

Mg2+ 0.22 -0.56 -0.09 0.190 -0.47 0.12 0.42 -0.12 0.46 0.30 -0.24 1.00 

Eigenvectors I II III IV V   

Eigenvalues 5.422 2.960 1.284 0.837 0.599   

Percentage of total variance contributed by each eigenvalue 

 45.2 % 24.7 % 10.7 % 7.0 % 5.0 %   

Cumulative (%) value of total variance 

 45.2 % 69.90% 80.60% 87.60% 92.60%   

  

 


