
  

Proceedings 2018, 2, x; doi: www.mdpi.com/journal/proceedings 

Proceeding 

Inversion for damping ratio of flat blade based on BP 

neural network † 

Xianei Zhang 1,* and Shudan Xia 2 

1 Power-Plant Institute, Chinese Flight Establishment, Xi’an 710089, China 
2 Power-Plant Institute, Chinese Flight Establishment, Xi’an 710089, China 

Emails: 710021280@qq.com, 916101797@qq.com. 

* Correspondence: 710021280@qq.com; Tel.: +86-18729542850 

† Presented at 18th International Conference on Experimental Mechanics (ICEM18), Brussels 1-5 July 2018.  

Published:  

Abstract: Aero engine is impacted by foreign objects frequently during daily usage, including 

runway gravel, birds, fuselage components and so on, so the fan and compressor may damage, 

resulting in serious air crash. Thus, simulating the impact of blades and establishing the numerical 

analysis model of dynamic response demand immediate attention. In the analysis model, damping 

coefficient is one of the most important physical parameters of the blade structure and cannot be 

directly measured. Rayleigh damping is widely applied and can be converted to direct modal 

damping in ABAQUS. BP neural network is a multi-layer feedforward neural network using back 

propagation algorithm to adjust the network weights. It can be proved that there exists a three-layer 

BP network to realize the mapping of arbitrary continuous functions with arbitrary precision. In this 

study, a novel method for obtaining the damping ratio of the flat blade which applies BP neural 

network inversion is proposed. In order to demonstrate this method, a simplified experiment was 

conducted. Firstly, fix a section of aluminum plate and then conduct two set of drop tests on 

different positions with different impact velocities by a steel ball. At the same time, vibration 

response was recorded by displacement sensor. Secondly, establish a finite element model using 

ABAQUS to simulate the drop test. Adopt twenty groups of models with different damping ratio 

and then obtain their amplitudes and decay time, respectively. Thirdly, train a BP neural network 

using MATLAB program and then establish the mapping relationship between amplitude, decay 

time and damping ratio. Fourth, a set of experimental amplitude and decay time is substituted into 

the previously obtained BP neural network mapping model, and then the real damping ratio is 

obtained by inference. Finally, the real damping ratio is applied to the flat blade impact simulation 

of the other set of drop test for validation. The numerical results are consistent with the experimental 

data, which indicates that the damping ratio obtained by BP neural network inversion is reasonable 

and reliable. 
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1. Introduction 

As the only power device of the aircraft, the aero-engine has been paid special attention [1], and 

its stability is closely related to the safety of the aircraft. However, the engine is often impacted by 

foreign objects, including runway gravel, birds, wrenches, bolts and so on, which result to serious 

damage to the engine and danger to occupants. Zhang and Fei [2] investigated the birdstrike on the 

engine fan blades and found that engine damage was significant relationship with birdstrike 

locations. Ma et al. [3] analyzed the vibration characteristics of the engine blades under impact load 

and the results showed that both blade rotation speed and aerodynamic force had a significant 

influence on the vibration response. Structure damping coefficient is an important parameter for 
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vibration response. The traditional experimental measurement method [4] is to obtain the logarithm 

reduction rate of the damped oscillator through the damping vibration curve first, and then obtain 

the time constant and structure damping coefficient. Lee and Sun et al. [5] found that the vibration 

frequency and damping coefficient of the composite beam were directly related to the fiber and 

matrix damage of the composite material, but it was only a qualitative result. Wolfenden et al. [6] 

proposed an experimental technique for determining structural damping in a vacuum environment, 

but this method was only used for materials with low natural frequency. To address this issue, this 

study proposes a new structural damping determining method based on BP neural network 

combined with experiments and simulations.  

Artificial neural networks (ANN) are powerful tools for prediction of nonlinearities. These 

mathematical models comprise individual processing units called neurons that resemble neural 

activity. Each processing unit sums weighted inputs and then applies a linear or nonlinear function 

to the resulting sum to determine the output. One ANN which has received most attention is the 

backpropagation network (BP neural network) [7]. BP neural network is a multi-layer feed-forward 

neural network that uses back-propagation algorithm to adjust network weights. It can be proved 

that a three-layer BP network can realize arbitrary continuous function mapping with arbitrary 

precision. The BP neural network is widely used. Liu Jun et al. [8] applied BP neural network to 

determine the parameters of the bird body modeled by smoothed particle hydrodynamics, which 

were consistent with the experimental results. Wang et al. [9] applied BP neural network to establish 

a flood forecasting model based on traditional hydrological data. Ma et al. [10] used BP neural 

network to optimize the control algorithm of the wheeled robot. In this study, the amplitude and 

decay time of twenty different damping coefficient models are taken as the input layer, and the 

damping coefficient of the model is taken as the output layer. The weight of the hidden layer is 

adjusted through the back-propagation of the cost function to obtain the weight matrix. Then the 

amplitude and decay time of the real structure response are input in the input layer, the damping 

coefficient of the real structure is obtained at the output layer. 

2. Experiment of impact on plate blade 

The size of plate blade used in the experiment was 130*50*2 mm, and it was made of aluminum 

alloy 2024-T3. The impactor was a steel ball with a mass of 5.4g. The impact height was 500mm and 

the impact position was on the symmetry axis of the flat blade, as shown in Figure 1. The 

displacement sensor was installed under the impact position. One side of the blade was fixed. 

 

Figure 1. Experimental schematic 

The actual displacement data of the impact point was obtained by displacement sensor in 

experiments, as shown in Figure 2. The curve was mixed with periodic oscillations of noise in the 

equilibrium position, which caused inconvenience to the data analysis. Therefore, the data was 

filtered to remove high-frequency noise, and then its envelope was obtained, as shown in Figure 3. 

The red dot line is the 5% height of the maximum amplitude. It showed that the maximum amplitude 

was 1.831mm and the decay time is 112.6ms. 
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Figure 2. Vibration displacement curve at impact point in experimental 
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Figure 3. Envelope of vibration displacement curve 

3. Simulation of impact on plate blade 

ABAQUS is used in this study for simulation. The flat blade is simulated using shell elements. 

The grid size is about 5mm which is determined by grid sensitivity analysis. The steel balls are 

divided into hexahedral grids using O-grid method. Contact is defined as “surface-to-surface contact 

explicit”. Table 1 shows the material parameters used in the simulation model. According to the 

principle of energy equivalence, a steel ball impacting a flat blade from a height of 500 mm can be 

equivalent to hitting with an initial velocity of 3.13 m/s. It is a low-velocity impact, so the materials 

only occur elastic deformation and strain rate effect is not taken into consideration. The impact force 

curve is shown in Figure 4. 

Table 1. Material parameters 

Material Density Young's modulus Poisson ratio 

Al 2.7g/cm^3 207gpa 0.3 

Steel 7.9g/cm^3 69gpa 0.29 
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Figure 4. Impact force curve.  



Proceedings 2018, 2, x 4 of 6 

 

The modal analysis of the flat blade is performed using ABAQUS and the first five order natural 

frequencies are obtained. The effective mass of each direction accounted for 90.02%, 93.82%, and 96.33% 

of the total free mass, respectively, satisfying the requirements. 

Table 2. The first 5 natural frequencies of the flat blade 

Modal order 1 2 3 4 5 

Frequency/Hz 209.45 1021.4 1310.7 3279.6 3704.1 

Rayleigh damping is a common damping type, which is obtained by weighted addition of modal 

mass matrix and stiffness matrix. In ABAQUS, Rayleigh damping is transformed into direct modal 

damping for calculation. Direct modal damping can be defined by the damping ratio of each mode. 

A modal dynamic analysis step is added after the modal analysis step, and the first five order natural 

frequencies are taken into simulation. According to the requirements of the BP neural network, 

twenty sets of damping ratios are taken from 0.5% to 10%, respectively. 

Figure 5 shows the displacement history curve of the impact point obtained from the simulation 

under the three representative damping ratios. The amplitude is taken as the maximum displacement, 

and the decay time is taken as the time when the displacement of the envelope is 5% of the maximum 

displacement. The amplitude and decay time of the model under each damping ratio are obtained, 

as shown in Table 3. 
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Figure 5. Displacement history curves of models with damping ratios of 2%, 6% and 10%  

Table 3-1. Relation between damping ratio and amplitude, decay time 

Damping ratio 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 

Amplitude(mm) 1.897 1.878 1.859 1.837 1.823 1.809 1.795 

Decay time(ms) 454.8 218.1 153.2 115.8 92.6 76.9 66.7 

Table 3-2. Relation between damping ratio and amplitude, decay time 

Damping ratio 4% 4.5% 5% 5.5% 6% 6.5% 7% 

Amplitude(mm) 1.783 1.772 1.759 1.745 1.733 1.721 1.706 

Decay time(ms) 58.5 52.6 47.5 42.8 39.2 36.4 33.8 

Table 3-3. Relation between damping ratio and amplitude, decay time 

Damping ratio 7.5% 8% 8.5% 9% 9.5% 10%  

Amplitude(mm) 1.694 1.685 1.673 1.662 1.647 1.639  

Decay time(ms) 31.6 29.6 27.6 25.9 25.1 24.5  

4. Inversion of BP neural network 

This study uses Neural Network Toolbox from Matlab to perform BP neural network inversion 

and a three-layer BP neural network is implemented. The input layer of the neural network has two 

neurons, which are the amplitude and decay time, and the output layer has one neuron, which is the 

damping ratio. According to the empirical formula, the number of hidden neurons is determined as 

5 by continuous adjustment. The input, hidden, and output layer neuron transfer functions adopt 
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tansig, the training algorithm adopts trainlm, the weight/threshold learning function adopts 

learngdm, and the performance function is MSE. Twenty sets of simulation data obtained in the 

previous section are divided into two groups. The first fourteen groups are training groups, and the 

latter six groups are used as validation groups. Through extensive debugging, the learning rate is 

determined as 0.1, the number of training iterations is 2000. The final training error is 0.00455%, 

meeting the requirements. The last six validation groups are taken into the trained BP neural network 

to obtain the inversion prediction values of damping ratios. Table 4 shows the damping ratio 

prediction values and errors. From the table, it can be seen that the BP neural network realizes a 

satisfactory prediction and the prediction result is not divergent, indicating that the training is 

effectively. 

Table 4. The inversion prediction values of damping ratios and errors 

Prediction 7.71% 8.18% 8.79% 9.31% 9.89% 10.15% 

Error 2.85% 2.26% 3.37% 3.4% 4.1% 1.54% 

Take the experiment data obtained in Section 2 into the trained BP neural network, the damping 

ratio of the aluminum plate blades is output as 2.11%. 

5. Validation 

In order to validate the correctness of the damping ratio of the aluminum plate blade obtained 

in Section 3, another experiment was conducted on the same blade. The mass of the ball is still 5.4g, 

the impact point is changed from 16.42mm to 11mm and the impact height is changed from 500mm 

to 1000mm. The maximum vibration displacement was 2.315mm, and the decay time is 105.2ms. The 

simulation is also conducted and the damping ratio of 2.11% is used. The envelope of experimental 

data is compared with the simulation vibration curve, as shown in figure 6. Figure 6 shows the 

consistency between experimental and simulation. Table 5 shows the amplitude and decay time 

obtained from experiments and the simulation. The errors of amplitude and decay time are 3.02% 

and 3.80%, respectively. The results indicate that the damping ratio of 2.11% is accurate and the 

method proposed in this study is feasible. 
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Figure 6. Comparison between experiment and simulation  

Table 5. The error of simulation prediction 

 Amplitude Decay time 

Experiment 2.315mm 105.2ms 

Simulation 2.385mm 109.2ms 

Error 3.02% 3.80% 

5. Conclusion 
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In this study, BP neural network is trained using the vibration data obtained from the 

simulations of plate blade models. The mapping relationship of amplitude, delay time and damping 

ratio is obtained. The real damping ratio of the plate blade is obtained by inversion of experimental 

amplitude and delay time. The real damping ratio is validated by another experiment with different 

impact location and height, which indicates that the inversion for damping ratio of flat blade based 

on BP neural network is reliable and effective.  
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