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Abstract: This contribution shortly introduces the anisotropic, micromechanical damage model for 

sheet molding compound (SMC) composites presented in the authors’ previous publication [1]. As 

the considered material is a thermoset matrix reinforced with long (≈ 25mm) glass fibers, the 

leading damage mechanisms are matrix micro-cracking and fiber-matrix interface debonding. 

Those mechanisms are modeled on the microscale and within a Mori-Tanaka homogenization 

framework. The model can account for arbitrary fiber orientation distributions. Matrix damage is 

considered as an isotropic stiffness degradation. Interface debonding is modeled via a Weibull 

interface strength distribution and the inhomogeneous stress distribution on the lateral fiber 

surface. Hereby, three independent parameters are introduced, that describe the interface strength 

and damage behavior, respectively. Due to the high non-linearity of the model, the influence of 

these parameters is not entirely clear. Therefore, the focus of this contribution lies on the variation 

and discussion of the above mentioned interface parameters. 

Keywords: sheet molding compound (SMC) composites, multiscale modeling, damage, interface 

characterization 

 

1. Introduction 

Sheet molding compound (SMC) composites receive increasing attention in industrial 

applications due to their high geometric freedom and low cycle times in manufacturing processes. In 

order to apply SMC composites, possibly locally reinforced with continuous fiber reinforced 

composites, as structural components, their mechanical and especially damage behavior must be 

examined and understood. Consequently, a precise and efficient prediction of the inhomogeneous, 

anisotropic and process-dependent mechanical properties can help to reduce the costly prototyping 

and further reduce development cycles. Various publications, therefore, are dedicated to the 

investigation of long fiber reinforced composites, such as SMC. Meraghni and Benzeggagh [2] and 

others [3]–[5], e.g., investigated damage propagation in randomly oriented, discontinuous fiber 

reinforced composites. Interface strength, using pull-out, push-out or fragmentation tests was 

characterized by, e.g., Favre et al. and others [6], [7]. Jendli et al. [3] and others [5], [8] investigated 

the influence of the strain rate on the mechanical and damage behavior . Based on the experimental 

findings, a variety of models have been developed. Yang et al. [9] proposed a phenomenological 
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damage model that is able to depict a transversely isotropic stiffness degradation. Various one- or 

two-step homogenization approaches are based on replacing a fiber with a damaged interface by an 

equivalent fiber with an undamaged interface (see, e.g., [10]–[13]). Hereby, either the localization 

tensor or the Eshelby tensor need to be computed numerically. Other approaches as, e.g., Ju and Lee 

[14], [15] consider fibers with damaged interfaces as either matrix material or voids. Interface 

debonding is commonly driven by a combination of the local shear and normal stress on the 

interface [10], [16]. Depending on the considered material combination plastic effects [13], [14] or 

viscous effects [4], [14] are taken into account. Despite the enormous work already conducted within 

the research of discontinuous fiber reinforced composites, some deficiencies still remain open. Few 

models, e.g., are physically motivated, take the microstructure into account and are still able to 

calculate structural components in reasonable time. Phenomenological models often use a variety of 

parameters, which cannot always be interpreted meaningfully. The model presented here addresses 

such deficiencies. Due to an efficient damage algorithm and rigorous numerical regularization the 

physical model is applicable to large scale problems. The Weibull based interface characterization 

comes with only three independent parameters. In this contribution the interface parameters and 

their influence on the damage evolution and overall stress-strain relation are studied. 

2. Continuum mechanical model 

2.1. Fundamentals 

According to [1] the SMC composite is considered a two-phase composite consisting of a matrix 

phase with volume fraction 𝑐M and glass fibers with volume fraction 𝑐F = 1 − 𝑐M. The matrix and 

fibers are modeled linear elastic with isotropic stiffnesses ℂM and ℂF, respectively. Furthermore, the 

fibers are modeled as straight ellipsoids with direction 𝒏, a uniform aspect ratio and a length of 

approximately 25mm. Fiber bending and fiber breakage are neglected. The microscopic orientation 

of fibers within the composite can be specified by an empirical representation of the fiber orientation 

distribution function 𝑓(𝒏) (FODF) which is defined as 

𝑓(𝒏) = ∑ 𝑐(𝒏𝛽)

𝐾

𝛽=1

𝛿(𝒏, 𝒏𝛽). 

The weights 𝑐(𝒏𝛽) are, so to speak, the volume fractions of fibers oriented in direction 𝒏𝛽 with 

respect to the total volume fraction 𝑐F, 𝛿(𝒏, 𝒏𝛽) is the Dirac delta distribution and 𝐾 is number of 

considered directions. The weights 𝑐(𝒏𝛽) are non-negative, normalized, and symmetric 

𝑐(𝒏𝛽) ≥ 0, ∑ 𝑐(𝒏𝛽)

𝐾

𝛽=1

= 1, 𝑐(𝒏𝛽) = 𝑐(−𝒏𝛽). 

2.2. Effective behavior 

The relation between the macroscopic stress �̅�  and strain �̅�  is given by the macroscopic 

stiffness ℂ̅ as �̅� = ℂ̅[�̅�]. Based on the Mori-Tanaka assumption that the fiber strain localization is 

calculated from the phase-averaged matrix strain 𝜺M, the effective stiffness has the form (see [17]) 

ℂ̅ = ℂM − 𝑐F(𝑐M⟨(ℙ0 + (ℂF − ℂM)−1)−1⟩F
−1 + 𝑐F(ℂF − ℂM)−1)−1. 

Based on the Eshelby tensor 𝔼0, an explicit expression of the polarization tensor ℙ0 = 𝔼0ℂM
−1 can be 

found in Ponte Castañeda and Suquet [18]. Based on the empirical FODF, the fiber orientation 

average can be calculated using the Rayleigh product as 

⟨𝔸⟩F = ∑ 𝑐𝛽𝑸(𝒏𝛽)

𝐾

𝛽=1

⋆ 𝔸0. 

Hereby, 𝔸0 = 𝔸(𝒆1) is an arbitrary tensor in the reference orientation 𝒆1 and 𝑸(𝒏𝛽) is a proper 

orthogonal rotation tensor. The Rayleigh product between such tensors is defined as 𝑸 ⋆ 𝔸 =

𝐴𝑖𝑗𝑘𝑙(𝑸𝒆𝑖)⨂(𝑸𝒆𝑗) ⊗ (𝑸𝒆𝑘) ⊗ (𝑸𝒆𝑙). The localized phase-averaged matrix and fiber stresses 𝝈M and 

𝝈F can be calculated via the corresponding Mori-Tanaka stress localization relations 

𝛔M = 𝔹M
MT[�̅�], 𝛔𝐅 = 𝔹F

MT[�̅�]. 
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The matrix and fiber stress localizations are determined by 

𝔹M
MT[�̅�] = (𝑐M𝕀s + 𝑐F⟨𝔹F0

SIP⟩
F

)
−1

, 𝔹F
MT = ⟨𝔹F0

SIP⟩
F

𝔹M
MT. 

Hereby, the fiber stress localization tensor in the single inclusion problem (SIP) in the reference 

orientation 𝔹F0
SIP is given by 𝔹F0

SIP = (𝕀s + ℂM(𝕀s − ℙ0ℂM)(ℂF
−1 − ℂM

−1))−1. 

As shown by Duschlbauer et al. [19], the directional dependent fiber stress 𝛔F
∠(𝐧𝛽) is calculated as 

𝛔F
∠(𝐧𝛽) = 𝔹F

SIP∠(𝒏𝛽)𝔹M
MT[�̅�], 𝔹F

SIP∠(𝒏𝛽) = 𝑸(𝒏𝛽) ⋆ 𝔹F0
SIP. 

2.3. Matrix damage 

Matrix damage is modeled as an isotropic degradation of the initial matrix stiffness ℂM
0  via a 

scalar damage variable 𝑑M as ℂM = (1 − 𝑑M)ℂM
0 . Since the thermoset matrix is considered brittle, 

the damage variable 𝑑M  is determined as a function of the maximal phase-averaged principal 

matrix stress 

𝑑M = 𝑑M ( max
τ∈[0,𝑡]

( max
𝛼=1,2,3

𝜎M
𝛼)). 

Hereby, the outer max function ensures, that 𝑑M can never decrease (e.g., healing is not possible). 

2.4. Fiber-matrix interface debonding 

Due to the high aspect ratios, interface debonding is assumed to be driven by the stress on the 

lateral fiber surface. The stress vector 𝒕  on the said surface is given by 𝒕(𝒏𝛽 , 𝒔) = 𝝈F
∠(𝒏𝛽)[𝒔]. 

Hereby, 𝒔 is the lateral surface normal of a fiber with direction 𝒏𝛽 . The stress vector can be 

decomposed into its normal component 𝜎I in direction 𝒔 and shear component τI in direction 𝒎 

𝒕(𝒏𝛽 , 𝒔) = 𝜎I(𝒏𝛽 , 𝒔)𝒔 + 𝜏I(𝒏𝛽 , 𝒔)𝒎, 𝒔 ⊥ 𝒏𝛽 , 𝒎 ⊥ 𝒔, 𝜏1(𝒏𝛽 , 𝒔) ≥ 0. 

The components are determined via projections of 𝒕 onto the corresponding directions 

𝜎I = 𝒕 ⋅ 𝒔, 𝜏𝐼 = √(𝒕 ⋅ 𝒏𝛽)
2

+ (𝒕 ⋅ (𝒏𝛽 × 𝒔))
2

. 

In order to determine the interface damage, an equivalent interface stress 𝜎I,eq(𝒏𝛽 , 𝒔) is introduced 

𝜎I,eq(𝒏𝛽 , 𝒔) = �̂�I,eq √(
𝜏I(𝒏𝛽 , 𝒔)

𝜏I0

)

𝑚

+ (
{𝜎I(𝒏𝛽 , 𝒔)}

𝜎I0

)

𝑚
𝑚

. 

Three of the four parameters �̂�I,eq , 𝜏I0 , 𝜎I0  and 𝑚  are independent and will later be chosen 

according to literature values. The Macaulay bracket ensures that only non-negative normal stresses 

{𝜎I(𝒏𝛽 , 𝒔)} contribute to the equivalent stress. Based on a weakest-link failure concept for the 

interface of a single fiber, a Weibull strength distribution for an inhomogeneous stress field is 

assumed [20]. This leads to a survival probability 𝑃s(𝒏𝛽) of a fiber in direction 𝒏𝛽 of 

𝑃s(𝒏𝛽) = exp (−
1

𝐴I0

∫ {
𝜎I,eq(𝒏𝛽 , 𝒔) − 𝜎u

𝜎o

}

𝑘

d𝐴I

𝐴I

). 

Here, 𝐴I is the surface area of one fiber. The material parameters 𝐴I0, 𝜎u, 𝜎o and 𝑘 characterize the 

fiber-matrix interface strength distribution. Again, the Macaulay-brackets {⦁} = max (0, ⦁) ensure 

that the equivalent stress 𝜎I,eq only contributes above a certain threshold 𝜎u. Analogously to the 

survival probability 𝑃s(𝒏𝛽)  a probability 𝑃i(𝒏𝛽)  of finding intact fibers in the corresponding 

direction 𝒏𝛽 needs to be calculated 

𝑃i(𝒏𝛽) =  
𝑐�̅�

𝑐𝛽
0 , 𝑐𝛽

0 > 0. 

Hereby, the current fiber fraction 𝑐𝛽 = 𝑐�̅� + č𝛽 is decomposed into an intact, load-carrying fraction 

𝑐�̅�  and a fraction of fibers with damaged interfaces č𝛽 . The initial fiber fraction is 𝑐𝛽
0 . The 

assumption of the presented interface damage model is that the probability 𝑃i(𝒏𝛽) of finding intact 

fibers in a direction 𝒏𝛽 can never be higher than the probability 𝑃s(𝒏𝛽) of fibers in that direction 

surviving a given external load. This leads to the consistency condition 

𝜙(𝒏𝛽) = 𝑃i(𝒏𝛽) − 𝑃s(𝒏𝛽) ≤ 0. 
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This direction-dependent damage function yields a natural evolution for the orientation distribution 

of intact, load-carrying fibers 𝑐�̅�. 

3. Fiber-matrix interface parameters 

Based on experimental findings according to [7], [21], the interface parameters are chosen as 

𝜎I0/𝜏I0 = 1.5 and 𝑚 = 2. Therefore, only three more parameters are independent. Following the 

survival probability 𝑃s(𝒏𝛽) these independent parameters can be chosen as 

𝜉1 ≔ 𝜎u, 𝜉2 ≔
1

(𝐴I0)1/𝑘

1

𝜎o

�̂�𝐼,eq,    ξ3 ≔ 𝑘. 

The three parameters are estimated by fitting the material model to uniaxial tensile tests on bone 

specimens. 𝜉1 is the lower stress threshold within the calculation of the survival probability 𝑃s(𝒏𝛽), 

𝜉2 can be interpreted as a prefactor and 𝜉3 is an exponent. In the following the parameters are 

varied from 25% to 200% according to the estimated values from the fitting procedure. Hereby, 

the effect on the macroscopic stress-strain relation under uniaxial tension and the corresponding 

evolution of the load-carrying fiber fraction 𝑐F  and matrix damage 𝑑M  are evaluated. Arrows 

indicate the influence of an increase of the parameters on the considered relations. 

3.1. Variation of 𝜉1 

With an increase of the interface stress threshold 𝜉1 the decrease of the load-carrying fiber 

fraction 𝑐F is delayed (see Fig. 1b). The equivalent interface stress, or the external load, respectively, 

needs to be higher in order to induce interface damage. That is to say, the fiber interfaces are 

stronger and can sustain a higher load. This means the interface strength is higher, if 𝜉1 is higher, 

respectively. Accordingly, the overall stress-strain relation is stiffer, as can be seen in Fig. 1a. The 

overall damage onset is delayed and weaker. Nevertheless, the evolution of the matrix damage (see 

Fig. 1b) is hardly influenced and remains approximately the same for all tested variations of 𝜉1. 

According to the model, the evolution of micro-cracks within the matrix is barely influenced by the 

lower interface damage threshold ξ1. 

3.2. Variation of 𝜉2 

An increase of the prefactor 𝜉2 leads to an earlier and faster decrease of the load-carrying fiber 

fraction 𝑐F  (see Fig. 2b). As the survival probability 𝑃s(𝒏𝛽)  according to Weibull is of the 

exponential type, a higher prefactor leads to a lower survival probability of a single interface. Similar 

Figure 2: Material response 

under uniaxial tension for 

varrying ξ2 = �̂�I,eq/(𝐴I0)1/𝑘𝜎o, 

(a) Macroscopic stress-strain 

relation, (b) Evolution of 

load-carrying fiber fraction 𝑐F 

and matrix damage 𝑑M. 

Figure 1: Material response 

under uniaxial tension for 

varrying ξ1 = 𝜎u, 

(a) Macroscopic stress-strain 

relation, (b) Evolution of 

load-carrying fiber fraction 𝑐F 

and matrix damage 𝑑M. 
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to above, the influence of a change of ξ2 on the matrix damage is quite little. But nevertheless, as the 

interface damage increases, the matrix damage 𝑑M decreases accordingly. The overall stress-strain 

relation is softer for higher ξ2. Damage onset is in total earlier and the damage evolution is faster. 

3.3. Variation of 𝜉3 

The initiation of interface damage is not affected by a variation of the exponent ξ3. But with an 

increase of ξ3 the interface damage evolution is significantly slower. The relations are analogue to 

the ones described above for ξ2. Due the exponential character of the Weibull survival probability 

𝑃s(𝒏𝛽), and the fact that the integral expression in this case is smaller than one, a higher exponent ξ3 

leads to a slower decrease of the load-carrying fiber fraction. Hereby, the evolution of the matrix 

damage 𝑑M  becomes higher, because more stress is transferred into the matrix, as less fiber 

interfaces are damaged. The overall macroscopic stress-strain relation therefore is stiffer for higher 

exponents. The higher ξ3 the more the material behaves purely elastic. 

 

4. Conclusions 

The presented, physically motivated and non-linear damage model by Schemmann et al. [1] is 

able to predict the evolution of load-carrying fibers and matrix damage on the microscale. The 

model yields reasonable results for the macroscopic stress-strain relation. The three independent 

parameters needed to describe the interface strength behave benevolent. The developed damage 

model can therefore be used to complete experimental characterizations. Within the International 

Research Training Group GRK 2078, e.g., uniaxial and biaxial tensile tests on continuous and 

discontinuous fiber reinforced SMC composites are performed (see Fig. 4). Especially the damage 

behavior of discontinuous reinforced SMC composites under biaxial loading is not adequately 

understood so far. The presented model can help calibrate and understand such experiments, as well 

as acoustic emission analyses and vice versa. In combination with in-situ investigations a better 

understanding of the damage mechanisms can be achieved. 

 

 

 

 

 

 

 

Furthermore, the model can be used to simulate structural components such as the reference 

structure shown in Fig. 5. Parts are produced and tested under four-point bending. The 

development of the parts as well as the experimental investigations are accompanied by simulations 

based on the here presented model, in order to optimize the part and pre-calculate the critical areas. 

Those areas then are of major interest within the experimental setup. 

Figure 4: SMC composite biaxial specimen 

with continuously reinforced arms 

Figure 5: real SMC composite structural part and simulation of four-point 

bending using the developed damage model 

Figure 3: Material response 

under uniaxial tension for 

varrying 𝜉3 = 𝑘, 

(a) Macroscopic stress-strain 

relation, (b) Evolution of 

load-carrying fiber fraction 𝑐F 

and matrix damage 𝑑M. 
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