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Abstract: An innovative mechanical testing method (Compressive Circular Ring Method) is provided 
for measuring Young’s modulus of each layer in a flexible multi-layered material. The method is 
based on a nonlinear large deformation theory. By just measuring the vertical displacement or the 
horizontal displacement of the ring, Young’s modulus of each layer can be easily obtained for 
various thin multi-layered materials. Measurements were carried out on an electrodeposited two-
layered wire. The results confirm that the new method is suitable for flexible multi-layered thin 
wires. In the meantime, the new method can be applied widely to measure Young’s modulus of thin 
layers formed by PVD, CVD, Coating, Paint, Cladding, Lamination, and others. 
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1. Introduction 

Young’s modulus of multi-layered materials is very important to predict large deformation in 
both analytical and technological interests. A new testing method (Circular Ring Method) is based on 
a nonlinear theory. This paper deals with the compressive technique. Exact analytical solutions are 
obtained in terms of elliptic integrals. In order to assess the applicability of the proposed method, 
several experiments were carried out using a two-layered material (Cu: an electrodeposited material 
+ SWPA: a spring steel material). As a result, the new method was found to be suitable for flexible 
multi-layered materials. Besides the Circular Ring Method studied here, the Axial Compression Method 
[1], the Own-weight Cantilever Method [2,3] for a flexible multi-layered material have already been 
developed and reported, based on the nonlinear large deformation theory. 

2. Fundamental theory 

A typical load-deformation shape is given in Fig.1 for a circular ring (the initial radius: R0, the 
whole length of the circular ring: 4L=2πR0) subjected to opposite compressive forces at two points. As 
an example, Fig.2 shows the cross-section of a two-layered material. 

The analysis is carried out for only the 1/4 part (Region AB, arc length L). The horizontal 
displacement is denoted by x, the vertical displacement by y, and θ is the deflection angle. 
Furthermore, the arc length is denoted by s, the radius of curvature by R and the bending moment 
by M. The relationship among R, M, s, x, y and θ are given by: 
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where Ei Ii = the flexural rigidity of each layer. 
    The bending moment applied at an arbitrary position Q(x, y) is expressed as 

AMxPM +−= ・  (2) 

Introducing the following non-dimensional variables, 
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Considering the boundary condition, ( ) 00
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dd at the point A, the basic equation 

is derived from Eqs.(1), (2) and (3) in the form of : 
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01sin2 ραθγζθ +±= ＋dd  (4) 

This nonlinear differential equation (4) is the basic equation that determines large deformation 
behaviors of a compressive ring. 
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2.1. In the case with no inflection point [see Fig.1(A)] 
2.1.1. Coverage 10 ≤≤ k  of the variable k in equation (5) 

Considering the boundary conditions ( ) 1maxmax == Lsζ , Lδη =max and Lλξ =max , the 
maximum non-dimensional arc length ζAB, the maximum non-dimensional vertical displacement ηAB 
and the maximum non-dimensional horizontal displacement ξAB are obtained as follows. 

( ) γφζ AAB  , 1 kF==  (6) 

( ) ( ){ } γφφδη AAAB  ,  , 2 kFkEL −==  (7) 

( )  cos1 2 AAB γφλξ −⋅== kL  (8) 

Similarly, the non-dimensional load γ  is 
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A

2  , )( φγ kFEIPL ==  (9) 

where ( ){ }[ ]21
A 21Sin k−=φ  

2.1.2. Coverage 1≥k of the variable k in equation (5) 
    By transforming the variables Zk sinsin =φ  the maximum non-dimensional arc length ζAB, the 
maximum non-dimensional vertical displacement ηAB and the maximum non-dimensional 

 
 

 
 

 

(A) In the case with no inflection point 

(B) In the case with inflection point a 
Figure 1. The co-ordinate system for a flexible multi-layered 
circular ring subjected to opposite compressive forces. 

Figure 2. Illustration of cross-section of  
two-layered material (as an example). 
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horizontal displacement ξAB are obtained as follows. 

( ) )(4 , 11AB γπζ kkF==  (10) 

( ) ( ) ( ){ } γππδη 4 , 1124 , 12A kFkkkEkLB ⋅−−⋅==  (11) 

( )  cos1 2 AAB γφλξ −⋅== kL  (12) 

where ( ){ }[ ]21
A 21Sin k−=φ  

Similarly, the non-dimensional load γ  is 

( ){ }22 4 , 1)( kkFEIPL πγ == , (13) 

2.2. In the case with inflection point [see Fig.1(B)] 
In this case, a measuring theory can be derived under the coverage of the variable k, 10 ≤≤ k .     

Details of the analytical theory will be omitted here. 
Equations (6)−(13) are fundamental formulas to obtain Young’s modulus of each layer, based on 

the nonlinear large deformation theory. The functions F(k,φ), E(k,φ) appeared in Eqs.(6)-(13) are 
Legendre−Jacobi’s elliptic integrals of the first and second kinds, respectively. 

The following formula based on Eq.(3) is useful in calculating each Young’s modulus Ei. 
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where Ii is the second moment of area. 
When calculating Young’s modulus Ei using Eq.(14), it is not necessary to determine the neutral 

axis for multi-layered rods/wires because the cross section is symmetrical at any time with respect to 
the neutral axis. The second moment of area Ii of each cross section for multi-layered rods/wires 
(diameter di) with respect to the neutral axis is shown as 

( ) )0(                            64 0
4

1
4 =−= − dddI iii π  (15) 

On the other hand, in case of multi-layered plates it is necessary to determine the neutral axis of 
materials. The second moment of area Ii of each cross section (thickness hi, width b: common to all) 
with respect to the neutral axis is shown as 
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  The distance y to the neutral axis (see Fig.2(a)) is obtained as follows. 
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The first moment of area (Si)z of each cross section (Ai: the cross-sectional area) with respect to z 
axis is expressed as 
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One quantity γ  (: the non-dimensional load) is required to calculate Young’s modulus Ei from 
Eq. (14). The value of γ  is obtained from a chart (: Nomograph) of γ -δ relation (δ : the vertical 
displacement) [Method 1] or γ -λ relation (λ : the horizontal displacement) [Method 2]. 
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3. Techniques of new measuring method (Compressive Circular Ring Method) 

In this paper, two methods are introduced in order to measure Young’s modulus. The γ -δ and γ 
-λ relations are presented in Figs.3 and 4, respectively. These charts are computed previously by 
using Eqs.(9). (13). Here, the usage of the chart is recommend by the author. As a point to note, for 
example, a two-step procedure should be done in a measuring experiment, when Young's modulus 
of each layer in a two-layered material is all unknown (Note that a multi-layered material with 
number of layers n requires a n- step procedure). In other words, it is possible to reduce a frequency 
of step in proportion to the number, if the number of layers with known Young's modulus is proven. 

3.1. Method 1: (Measurement of δ only) 
The usage of this method is shown below in a two-layered material. Each Young’s modulus Ei is 

obtained for a SWPA thin wire (: first layer) with 1/4 part length: L1=125.0[mm](4L1(500 [mm]): whole 
length of the ring), diameter: d1=0.38[mm] and a Cu electrodeposited layer (: second layer) with 
length: L2 (=L1) =125.0[mm], thickness: (d2−d1)/2=0.011[mm] (d2: 0.402 [mm]). 

A chart (: Nomograph) is given in Fig.3, illustrating the relationship of γ and δ//L. Using this 
chart, each Young’s modulus Ei in a multi-layered material can be calculated from the relational 
expression given in Eq.(14). 

3.1.1. First step procedure (As a two-layered specimen) 
     Under the condition of P=39.24[mN], δ=64.7[mm] (i.e., δ/L=0.5176) is measured for a double 
layer and then the value of γ  is taken from Fig.3 (γ =2.470). Therefore, using Eq.(14), the combined 
flexural rigidity (I1=1.023×10-15[m4]: SWPA, I2=2.584×10-16[m4]: Cu) is derived as follows 

3.1.2. Second step procedure (As a single-layered specimen) 
     Similarly, δ is measured for a single layer after removing a second layer (Cu). In the condition 
of P=34.34[mN] for a SWPA single layer with length: L1=125.5[mm], diameter: d1=0.38[mm], 
δ=64.4[mm] (i.e., δ/L=0.5148) is measured and γ is taken newly from Fig.3* (γ=2.51) [*: Drawing is 
omitted here.]. Therefore, the flexural rigidity (I1=1.023×10-15[m4]: SWPA) can be rewritten as follows 
from Eq.(14) follows. 

422
111 10135.251.2125.003434.0 −×=×== γPLIE  (20) 

     Using the simultaneous equations (19) and (20), Young’s modulus E1, E2 of each layer is 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

422
12211 10480.2470.2125.003924.0 −×=×==+ γPLIEIE  (19) 

Figure 3. Non-dimensional chart for the parameter γ 
when the vertical displacement δ is given. 

Figure 4. Non-dimensional chart for the parameter γ 
when the horizontal displacement λ is given. 
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calculated as E1=209.3 [GPa] for a SWPA layer and E2=129.9 [GPa] for a Cu layer. 

3.2. Method 2: (Measurement of λ only) 
    A similar chart (: Nomograph) is given in Fig.4, illustrating the relationship of γ and λ /L. Using 
this chart, each Young’s modulus Ei in a multi-layered material can be calculated from Eq.(14). As an 
example, Young’s modulus Ei of each layer is obtained for a SWPA thin wire (: first layer) + a Cu thin 
layer (: second layer) mentioned above (see the tertiary section 3.1). 

3.2.1. First step procedure (As a two-layered specimen) 
    Under the condition of P=34.34[mN], λ =89.5[mm] (i.e., λ/L=0.7184) are measured for a double 
layer and then the value of γ is taken from Fig.4 (γ =2.220). Therefore, from Eq.(14) the combined 
flexural rigidity (I1=1.023×10-15[m4]: SWPA, I2=2.584×10-16[m4]: Cu) can be written as follows 

3.2.2. Second step procedure (As a single-layered specimen)  
    Similarly, λ is measured for a single layer after removing a second layer (Cu). In the condition of 
P=29.43[mN] for a SWPA single layer, λ =89.5 [mm] (i.e., λ/L=0.716) is measured and then γ is taken 
newly from Fig.4* (γ =2.15) [*: Drawing is omitted here.]. Therefore, the flexural rigidity (I1=1.023×10-

15[m4]: SWPA) can be rewritten as follows from Eq.(14). 

From the simultaneous equations (21) and (22), Young’s modulus E1, E2 of each layer is 
calculated as E1=209.5 [GPa] for a SWPA layer and E2=104.57 [GPa] for a Cu layer. 

4. Experimental investigation 

In order to assess the applicability of the Compressive Circular Ring Method, several large 
deformation experiments were carried out using a two-layered wire [Cu (Copper) layer: an 
electrodeposited material (0.011mm thick, 500mm long) + SWPA layer: a spring steel wire (0.38mm 
diameter, 500mm long)]. The experimental set-up is shown in Fig.5 (which shows a thin multi-layered 
plate, for example). Since Young’s modulus of each layer in the two-layered material is unknown, the 
measuring experiments were carried out by adopting the two-step procedure. In every step of the 
procedures, a vertical displacement δ and a horizontal displacement λ are measured for several 
compressive loads P by using a grid paper with 1mm spacing. 

Young’s moduli of Cu and SWPA obtained by applying Method 1 and Method 2 are shown in 
Figs. 6 and 7, respectively. Here, the influence of a load (P) upon Young’s modulus (E) was examined. 

422
12211 10414.2220.2125.003434.0 −×=×==+ γPLIEIE  (21) 

422
111 10136.215.2125.002943.0 −×=×== γPLIE  (22) 

Figure 5. Experimental set-up (as an example,  
a multi-layered plate specimen is shown). 
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The figures were described under a two-layered condition 

In a Cu layer (see Fig.6), the measured values of Methods 1 and 2 remain nearly constant for a 
compressive load and the standard deviation (S.D.) is very small although every method has a little 
scattered values. As a whole, the mean Young’s moduli (shown as Av.: Average) determined by the 
two methods are reasonably in good agreement with each other. On the other hand, Trends similar 
to that of Fig.6 is observed for Young’s moduli of a SWPA layer (see Fig.7). The mean values obtained 
by the two methods agree well. 

5. Conclusions 

The “Compressive Circular Ring Method” is proposed as a new and simpler material testing 
method for measuring Young’s modulus of each layer in a flexible multi-layered material. 

From the results of theoretical and experimental analyses, the new method is effective for measuring 
Young’s modulus of each layer in a flexible multi-layered material. Furthermore, the proposed new 
method is applicable widely to Young’s modulus measurement in a thin layer formed, for example, 
by PVD (Physical Vapor Deposition), CVD(Chemical Vapor Deposition), Coating (Graphite, Metal 

Oxide), Paint(Lacquer) , etc. 
 

Author Contributions: Ohtsuki.A. performed the theoretical analysis, conceived and designed the experiments, 
and wrote the paper. 
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Figure 6. Comparison of Young’s moduli of an  
electrodeposited material (Cu: E2) between the two  
measuring methods for various values of the load P. 
(Note: E1 of SWPA is known previously.) 

Figure 7. Comparison of Young’s moduli of a  
spring steel wire (SWPA: E1) between the two  
measuring methods for various values of the load P.  
(Note: E2 of Cu is known previously.) 
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