

1 Article

2 Monoclinic zirconium oxide nanostructures having

3 tunable band gap synthesized under extremely non-

4 equilibrium plasma conditions

5 Onkar Mangla¹ and Savita Roy^{1,*}

- ¹ Physics Department, Daulat Ram College, University of Delhi, Delhi-110007, India;
 ⁷ onkarmangla@gmail.com; savitaroy64@gmail.com
- 8 * Correspondence: savitaroy64@gmail.com; Tel.: +91-9810629598
- 9 Academic Editor: name
- 10 Received: date; Accepted: date; Published: date

11 Abstract: Zirconium oxide (ZrO2) being a wide and direct band gap semiconductor used for 12 fabrication of optoelectronic devices. ZrO₂ based optoelectronic devices span wide optical range 13 depending on the band gap of ZrO2 material. The band gap of ZrO2 can be tuned by fabricating it to 14 nanoscale. In this paper, we synthesized the ZrO₂ nanostructures on quartz substrate using ZrO₂ 15 ions produced by the ablation of ZrO₂ pellet due to high temperature, high density and extremely 16 non-equilibrium argon plasma in a modified dense plasma focus device. Uniformly distributed 17 monoclinic ZrO2 nanostructures of average dimension ~ 14 nm have been obtained as found from 18 X-ray diffraction and Scanning electron microscopy studies. The monoclinic phase of ZrO2 19 nanostructures is further confirmed from photoluminescence (PL) and Raman spectra. PL spectra 20 show peaks in ultra-violet (UV), near-UV and visible regions with tunable band gap of 21 nanostructures. Similar tunability of band gap has been observed from absorption spectra. The 22 obtained structural, morphological and optical properties are correlated to investigate the potential 23 applications of ZrO₂ nanostructures in optoelectronic devices.

- Keywords: Nanocrystalline materials; Zirconium oxide; Synthesis; Luminescence; Energy band
 gap.
- 26

27 1. Introduction

28 Zirconium oxide (ZrO₂) is an interesting semiconducting material having wide band gap, which 29 is being studied extensively to explore its fundamental properties for making high efficient devices. 30 The band gap of ZrO₂ decreases on increasing the processing temperature, which makes it more 31 conductive and hence it can be used in applications-oriented research. ZrO₂ has high melting point, 32 high mechanical and thermal resistance, high dielectric constant and low electrical conductivity. ZrO2 33 is also chemically stable with excellent hardness and biocompatibility, which render it as a suitable 34 candidate to be used for chemical, optical, dielectric and mechanical applications [1-3]. ZrO₂ has 35 potential to be used in making fuel cells [4], protective coatings for mirrors [3] and optoelectronic 36 devices [5]. ZrO₂ possess high dielectric constant, which makes it an ideal candidate for replacement 37 of conventional gate oxide in field effect transistors in the future generation nanoelectronic devices.

The physical properties of the ZrO₂ are influenced significantly by its crystal structure. ZrO₂ exists in three polymorphic phases depending upon the growth temperature i.e. monoclinic (exists at low temperatures below 1150 °C and it is a thermodynamically stable phase), tetragonal (exists at intermediate temperatures within the range of 1150-2370 °C) and cubic (exists a very high 42 temperature greater than 2370 °C) [6]. The monoclinic crystal structure being the thermodynamically 43 stable phase fulfills the stability requirement of ZrO₂ based nanoelectronic devices. ZrO₂ when 44 fabricated at nanoscale results in emission peaks at short-wavelength typically in UV region, which 45 have applications in making read heads of compact discs (CDs) and increasing storage density of 46 CDs [7,8]. In addition, the band gap of ZrO₂ can be tuned at nanoscale which increases the 47 applications and also the efficiency of fabricated devices.

48 ZrO₂ nanostructures have been fabricated in variety of morphologies such as nanoparticles [9], 49 nanobars [10], nanobelts [11], nanowires [12] and nanotubes [13]. The fabrication of these different 50 morphologies of ZrO₂ nanostructures are mainly by the chemical methods. However, the chemical 51 methods have used several precursors and other reacting agents which ultimately induces the 52 impurity in nanostructures making them unqualified for fabricating high efficient devices. Plasma-53 assisted methods overcome the disadvantages of the chemical methods in the fabrication of 54 nanostructures. Moreover, the fabrication of ZrO₂ nanostructures using a plasma-assisted methods 55 has not yet reported in the literature. Thus, it is necessary to study the properties of ZrO2 56 nanostructures when fabricated using a plasma-assisted technique.

57 This paper reports the synthesis of ZrO₂ nanostructures on quartz substrate using the material 58 ions produced due to the ablation of ZrO₂ pellet by the hot, dense and extremely non-equilibrium 59 argon plasma generated in a modified dense plasma focus (DPF) device. The properties of ZrO₂ 60 nanostructures such as morphological, structural and optical have been studied and discussed in 61 comparison with the earlier reports.

62 2. Results and Discussion

63 Figure 1a shows the scanning electron microscopy (SEM) image of deposited sample, indicating 64 formation of uniformly distributed ZrO2 nanostructures having surface density ~ 4100 65 nanostructures/µm². The size distribution of ZrO₂ nanostructures is shown in inset of Figure 1a and 66 the peak of Gaussian profile in histogram gives average dimension of nanostructures ~ 14 nm. 67 Transmission electron microscopy (TEM) image shown in Figure 1b confirms the formation of 68 nanostructures with morphology similar to that obtained in SEM results. However, it is difficult to 69 estimate the size distribution from TEM image thus a typical nanostructure with dimension ~ 15 nm 70 is shown by arrow in Figure 1b. The morphology and dimension of nanostructures obtained from 71 TEM results is in good agreement with that obtained from SEM results.

72

Figure 1. (a) SEM image (inset show size distribution) and (b) TEM image of ZrO₂ nanostructures.

In order to investigate the crystalline phase of ZrO₂ nanostructures, X-ray diffraction (XRD)
studies have been carried out. XRD pattern shown in Figure 2 have crystalline diffraction peaks at 20
values of 28.2°, 31.5°, 38.5°, 50.1° and 59.8° corresponding to [-111], [111], [120], [022] and [131] planes,

- 79 respectively of monoclinic ZrO₂ (ICDD File No. 37-1484). The grain dimension is found from Debye
- 80 Scherrer's equation
- $D = \frac{0.9\lambda}{\beta\cos\theta},$ 81

82

85

86 where D is grain dimension in nm, λ is wavelength in nm, β is full width at half maxima (FWHM) in 87 radians and θ is angle of diffraction corresponding to peak. The grain dimension has been found for 88 each peak of XRD pattern individually and the average has been taken. The average grain dimension 89 is found to be about 14 nm, which is in good agreement with the dimension of nanostructures 90 obtained from SEM and TEM results. The length of dislocation per unit volume i.e. dislocation 91 density (δ) depends upon grain dimension (D) as

92

$$\delta = \frac{1}{D^2},\tag{2}$$

93 In addition, the strain (ϵ) produced in the film or nanostructures due to presence of such dislocations 94 can be calculated using the relation

$$\varepsilon = \frac{\beta \cos \theta}{4},\tag{3}$$

96 The obtained values of 2 θ , θ , β , D, δ and ε have been summarized in Table 1. The average strain 97 produced in nanostructures is ~ 2.5 x 10-3 indicating good quality of deposited nanostructures.

98 99

95

Table 1. Structural parameters of ZrO₂ nanostructures obtained from XRD pattern.

2θ (°)	θ (°)	β (radians)	D (nm)	δ (x 10 ⁻³ nm ⁻²)	ε (x 10-3)
28.2	14.1	0.01166	12	6.94	2.83
31.5	15.75	0.01307	11	8.26	3.14
38.5	19.25	0.00865	17	3.46	2.04
50.1	25.05	0.00936	16	3.91	2.12
59.8	29.9	0.01089	15	4.44	2.36

101 The monoclinic structure of ZrO₂ nanostructures has been confirmed using photoluminescence 102 (PL) and Raman spectra. The PL spectrum shown in Figure 3a has peaks at 376 nm (3.29 eV), 408 nm

103 (3.04 eV) and 478 nm (2.59 eV). The peak obtained at 376 nm lies in UV region and it arises due to

104 presence of oxygen vacancies in the nanostructures. These oxygen vacancies make the extrinsic states

105 between valence band and conduction band yielding radiative transition at energy lower than band

(1)

¹⁰⁰

106 gap of ZrO₂ (~ 5 eV). The decrease in energy of this radiative transition is also associated with the size 107 and crystal quality of nanostructures which ultimately shift the emission spectra. Similar peaks near 108 376 nm have also been observed by several researchers [8, 14-16] for ZrO₂ nanostructures. In the 109 present experiment, ZrO₂ get ionized into zirconium and oxygen ions which subsequently upon 110 reaching the substrate recombine to form ZrO₂ nanostructures. However, in the process of 111 recombination several oxygen-oxygen atoms recombine to form oxygen gas molecule which is lost 112 from the material yielding oxygen vacancy in ZrO₂ nanostructures.

113 The PL peak at 408 nm lies in near-UV region and it arises due to transition from mid-gap trap 114 state to valence band. The mid-gap trap states are formed mainly due to surface defects such as 115 dislocations which are prominent in smaller dimension nanostructures. Similar peak has been 116 observed in literature [14,17,18] by other researchers for ZrO₂ nanostructures. On the other hand, 117 peak at 478 nm is characteristic peak of monoclinic ZrO₂ [19]. The monoclinic phase of ZrO₂ obtained 118 in PL spectra is in confirmation with that obtained in XRD results. PL spectra reported in most of the 119 earlier research papers [8, 14-16,18,19] consists only one broad band arise from defect states such as 120 oxygen vacancies. The ZrO₂ nanostructures deposited in the present experiment using high fluence 121 ions in modified DPF device have multiple peaks in PL spectra lying mainly in UV and near-UV 122 regions. The observation of multiple peaks in PL spectra of nanostructures is due to tuning of band 123 gap of ZrO₂ by the action of highly energetic and high fluence ions. This tuning of band gap and 124 emission in UV, near-UV and visible regions render the deposited ZrO₂ nanostructures suitable 125 candidate for optoelectronic device applications. Moreover, the use of plasma-assisted method such 126 as modified DPF device results in multiple peaks in PL spectra, which render these ZrO2 127 nanostructures to be used in wide optical range for fabrication of optoelectronic devices. On the other 128 hand, in chemical methods the optical range of optoelectronic devices is narrow due to single broad 129 band in PL spectra. This shows the clear advantages of plasma-assisted method i.e. modified DPF 130 over chemical methods for making ZrO₂ nanostructures more viable to be used in device applications.

- 131The monoclinic phase of ZrO_2 nanostructures obtained from PL and XRD results is further132confirmed from Raman spectra. The Raman spectra shown in Figure 3b have peaks at 178, 189, 476133and 520 cm⁻¹ which all are attributed to monoclinic phase of ZrO_2 [15,18,20].
- 134

135 136 137

138 The band gap of nanostructures has been tuned as obtained from PL results and to ascertain the 139 value of band gap, absorption spectra has been taken which is shown in Figure 4a. It shows a peak at 140 292 nm which arise due to transition from valence band to conduction band [8,14,18]. As the ZrO₂ 141 nanostructures have monoclinic structure thus the transition involved in this peak is mainly due to 142 Zr^{3+} ions in the interstitial [21]. Tauc plot given in Figure 4b gave the band gap of nanostructures ~ 143 2.67 eV. Hence the ZrO₂ nanostructures have tuned band gap which lies in the region of observed PL 144 peaks. The tunability of band gap also suggests possible applications of nanostructures in 145 enhancement of solar cell efficiency.

146 147

148 **3. Materials and Methods**

149 ZrO₂ nanostructures were synthesized on quartz substrate in the modified DPF device. The 150 target used for deposition was ZrO₂ pellet, which was made using ZrO₂ powder (99.99% pure) by 151 compressing it to a pressure of 10 MPa and subsequently sintered them at a temperature of 800 °C 152 for 6 hours. The quartz substrates were cleaned ultrasonically and were placed at an optimum 153 distance of 5.0 cm from anode top. Two bursts of focused plasma were used for deposition of ZrO₂ 154 nanostructures. The process of formation of high temperature, high density and extremely non-155 equilibrium argon plasma on the top of anode along with the modifications to DPF device for 156 nanofabrication have been reported in earlier literature [22,23]. The focused argon plasma formed at 157 top of modified anode ablates ZrO₂ pellet and ablated material ions move vertically upward in 158 fountain like structure and get deposited on quartz substrates. The obtained samples were analyzed 159 to study their morphological, structural and optical properties using different characterization 160 techniques. The surface morphology was studied using SEM and TEM on Environmental scanning 161 electron microscope model Quanta 200 FEI and transmission electron microscope model FEI G² 162 Tecnai, respectively. Structural properties were studied using XRD pattern taken on D8 DISCOVER 163 X-ray diffractometer having Cu K α radiation of wavelength 1.54 Å. The room-temperature PL was 164 done on Fluorolog (HORIBA JOBIN-YVON) spectrofluorophotometer using 270 nm (4.59 eV) 165 excitation wavelength from a xenon flash lamp. Raman spectra were measured on in-Via Reflex 166 (Renishaw) spectrometer equipped with Ar-Ne laser. Absorption spectra were taken on Perkin Elmer 167 Lambda 35 ultra violet-visible (UV-VIS) spectrophotometer in absorption mode.

168 4. Conclusions

169 ZrO₂ nanostructures have been fabricated using material ions in the modified DPF device. The 170 nanostructures have uniform distribution with average dimension of ~ 14 nm. ZrO₂ nanostructures 171 have monoclinic phase, possess nanograins and have low strain obtained from XRD pattern. UV and 172 near-UV peaks are obtained in PL spectra due to defects and dislocations. PL and Raman spectra 173 confirm the monoclinic phase of ZrO₂ nanostructures. ZrO₂ nanostructures have tunable band gap 174 obtained from PL and absorption studies. The optical band gap so obtained from PL and absorption 175 spectra suggest possible applications of nanostructures in optoelectronic devices and efficiency 176 enhancement of solar cells.

Acknowledgments: Authors are thankful to the University Science Instrumentation Center (USIC), Delhi
 University for providing characterization facilities.

- Author Contributions: Both the authors conducted the study, analyzed the data and drafted the manuscript.Both the authors approved the final version.
- 181 **Conflicts of Interest:** The authors declare no conflict of interest.

182 References

- 183 1. Garvie, R.C.; Hannink, R.H.; Pascoe, R.T. Ceramic steel. *Nature* 1975, 258, 703-704.
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. *J. Appl. Phys.* 2001, 89, 5243-5275.
- Zhang, Q.; Shen, J.; Wang, J.; Wu, G.; Chen, L. Sol–gel derived ZrO₂–SiO₂ highly reflective coatings. *Int. J. Inorg. Mater.* 2000, 2, 319-323.
- Koch, T.; Ziemann, P. Zr-silicide formation during the epitaxial growth of Y-stabilized zirconia films on Si(100) and its avoidance by ion beam assisted deposition at a reduced temperature. *Appl. Surf. Sci.* 1996, 99, 51-57.
- Wang, X.; Zhai, B.; Yang, M.; Han, W.; Shao, X. ZrO₂/CeO₂ nanocomposite: Two step synthesis, microstructure, and visible-light photocatalytic activity. *Mater. Lett.* 2013, 112, 90-93.
- 193 6. Gao, P.; Meng, L.J.; dos Santos, M.P.; Teixeira, V.; Andritschky, M. Study of ZrO₂-Y₂O₃ films prepared by
 rf magnetron reactive sputtering. *Thin Solid Films* 2000, 377, 32-36.
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. *Science* 2001, 292, 1897-1899.
- Cao, H.Q.; Qiu, X.Q.; Luo, B.; Liang, Y.; Zhang, Y.H..; Tan, R.Q.; Zhao, M.J.; Zhu, Q.M. Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires. *Adv. Funct. Mater.* 2004, 14, 243-246.
- Dwivedi, R.; Maurya, A.; Verma, A.; Prasad, R.; Bartwal, K.S. Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles. *J. Alloys Compd.* 2011, 509, 6848-6851.
- 202 10. Espinoza-Gonzalez, R.A.; Diaz-Droguett, D.E.; Avila, J.I.; Gonzalez-Fuentes, C.A.; Fuenzalida, V.M.
 203 Hydrothermal growth of zirconia nanobars on zirconium oxide. *Mater. Lett.* 2011, 65, 2121–2123.
- Jiang, C.; Wang, F.; Wu, N.; Liu, X. Up- and Down-Conversion Cubic Zirconia and Hafnia Nanobelts. *Adv. Mater.* 2008, 20, 4826–4829.
- 206 12. Dong, W.-S.; Lin, F.-Q.; Liu, C.-L.; Li, M.-Y. Synthesis of ZrO₂ nanowires by ionic-liquid route. *J. Colloid* 207 *Interface Sci.* 2009, 333, 734–740.
- 208 13. Zhao, J.; Wang, X.; Zhang, L.; Hou, X.; Li, Y.; Tang, C. Degradation of methyl orange through synergistic
 209 effect of zirconia nanotubes and ultrasonic wave. *J. Hazard. Mater.* 2011, 188, 231–234.
- 14. Kumari, L.; Li, W.Z.; Xu, J.M.; Leblanc, R.M.; Wang, D.Z.; Li, Y.; Guo, H.; Zhang, J. Controlled
 Hydrothermal Synthesis of Zirconium Oxide Nanostructures and Their Optical Properties. *Cryst. Growth*Des. 2009, 9, 3874-3880.
- Ling, X.; Li, S.; Zhou, M.; Liu, X.; Zhao, Y.; Shao, J.; Fan, Z. Annealing effect on the laser-induced damage
 resistance of ZrO₂ films in vacuum. *Appl. Opt.* 2009, 48, 5459-5463.
- Salavati-Niasari, M.; Dadkhan, M.; Davar, F. Pure cubic ZrO₂ nanoparticles by thermolysis of a new precursor. *Polyhedron* 2009, 28, 3005-3009.
- Liang, J.; Deng, Z.; Jiang, X.; Li, F.; Li, Y. Photoluminescence of Tetragonal ZrO2 Nanoparticles Synthesized
 by Microwave Irradiation. *Inorg. Chem.* 2002, 41, 3602-3604.
- Kumari, L.; Du, G.H.; Li, W.Z.; Vennila, R.S.; Saxena, S.K.; Wang, D.Z. Synthesis, microstructure and optical
 characterization of zirconium oxide nanostructures. *Ceram. Int.* 2009, 35, 2401-2408.
- 19. Lai, L.-J.; Lu, H.-C.; Chen, H.-K.; Cheng, B.-M.; Lin, M.-I.; Chu, T.-C. Photoluminescence of zirconia films with VUV excitation. *J. Elect. Spectrosc. Relat. Phenom.* 2005, 144-147, 865-868.
- 22. Kumari, L.; Li, W.Z.; Wang, D.Z. Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route. *Nanotechnol.* 2008, 19, 195602 (7 pp).
- 21. Mikhailov, M.M.; Verevkin, A.C. The Variation of Band Gap Width in Zirconium Oxide Powders on
 Grinding. *Russ. Phys. J.* 2004, 47, 600-604.
- 22. Mangla, O.; Srivastava, M.P. GaN nanostructures by hot dense and extremely non-equilibrium plasma and
 their characterizations. *J. Mater. Sci.* 2013, 48, 304-310.
- 229 23. Mangla, O.; Roy, S.; Ostrikov, K. Dense Plasma Focus-Based Nanofabrication of III–V Semiconductors:
 230 Unique Features and Recent Advances. *Nanomater.* 2016, 6, 4 (13 pp).

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).