In vitro Drug-Drug Interaction Studies of Gliclazide With Levofloxacin By Using HPLC: **Guidelines for Co-prescription Drugs**

Santosh S. Chhajed*, Harshala Chaudhari, Yatish Rajderkar, Akshada Pingle, Sandeep Sonawane, Sanjay Kshirsagar Department of Pharmaceutical Chemistry MET, Institute of Pharmacy, Nashik-422003

Abstract:

A simple, accurate reversed-phase high-performance liquid chromatography method was developed and validated for simultaneous determination of gliclazide (GLZ) and fluoroquinolone antibacterial levofloxacin (LVO). The method was developed by using a stainless steel analytical column, C18 (250,4.6 mm,5µm). The system was operated using a mobile phase consisting of methanol and phosphate buffer (pH 3.0) at a flow rate of 0.8mL min⁻¹ with *ultraviolet* detection monitored at wavelength 228 nm. The above method was validated using *ICH* analytical method validation guidelines. Utilizing HPLC techniques, an assay was intended to determine in vitro effects of levofloxacin on sulphonyl urea an anti-diabetic gliclazide. Obtained results were further verified with UV spectrophotometric method. Availability of gliclazide was reduced in the presence of levofloxacin. This in vitro analyses confirms the co-administartion of gliclazide and levofloxacin and may serve the foundation for designing further in vivo studies.

Experimentals

In the present investigation, an attempt has been made develop a sensitive, simple, accurate, rapid and reproducib reverse-phase HPLC method for simultaneous determination LVO and GLZ, an representative sulphonylurea class of di followed by its validation, in accordance with the guidelines.

Optimized Chromatographic Conditions

Isocratic elution with mobile phase methanol: phosphate buffer pH 3.0 (70:30) (v/v) was carried out on phenomenex kinetex C18 column (250×4.6mm,5µm) at flow rate of 0.8mLmin⁻¹ the wavelength was fixed at 228 nm.

	Validation studies					
Sample	Linear range (µgmL ⁻¹)	Correlation coefficient	LOD (µgmL ⁻¹)	LOQ (µgmL ⁻¹		
LVO	5-25	0.999	0.050407	0.31978		
GLZ	1-5	0.999	0.10553	0.15274		

Table1: Results obtained from linearity, LOD, and LOQ

Introduction

Diabetes mellitus (DM), a major lifestyle disease is undoubtedly the most challenging public health problem of 21st century. Diabetes is a chronic metabolic disease that occurs when the human body is not able to produce enough of the hormone insulin.

Gliclazide (GLZ) is a well-known antidiabetic agent prescribed frequently for treatment of DM. GLZ known to act by its selective binding with sulfonylurea receptors (SUR-1) on the surface of the pancreatic beta-cells which in turn leads to exocytosis of insulin vesicles leading to insulin release. **Levofloxacin** (LVO), is an fluoroquinolone class of antimicrobial agent use for the treatment of different infections. LVO is active against both Gram-positive and Gramnegative bacteria. It acts by inhibiting the two type enzymes, namely DNA gyrase and topoisomerase IV¹

	to	
k	ole	
)	of	
r	ug	
(СН	

Gliclazide				Le			
Injection	tion Intraday		Interday		Intrada		
	Area	RSD	Area	RSD	Injection	Area	
		(%)		(%)			
1	75040		75964		1	357142	
						5	
2	76511		76390.5		2	351285	
3	76337	0.75	75626	0.40	3	355478	
4	76578.3		76321		4	362371	
5	76329.8		76392		5	364444	
6	76231		76193		6	359141	
1000	A CONTRACTOR						

Table 2: Precision parameters of Drugs

Time (mins)	Gliclazide	Levofloxacin	Time (mins)	Gl
	(µgmL⁻¹)	(µgmL⁻¹)		()
0	_	_	0	
15	4.75	0.48	15	
30	13.47	3.49	30	
45	15.84	10.63	45	
60	25.33	23.64	60	
75	31.6	43.10	75	
90	36.77	54.23	90	
105	45.47	66.14	105	
120	51.50	83.49	120	

Table 3: Percent availability of gliclazide after interaction with levofloxacin

Table 4: Percent availability of dosage form

