

4th International Electronic Conference on Medicinal Chemistry

1-30 November 2018 chaired by Dr. Jean Jacques Vanden Eynde

sponsored by
pharmaceuticals

Molecular docking studies of novel 9-aminoacridines with potential antimalarial activity

Vladimir D. Dobričić ¹, Miloš V. Nikolić ^{2,*}, Marina Ž. Mijajlović ², Andriana M. Bukonjić ², Dušan Lj. Tomović ², Gordana P. Radić ², Zorica B. Vujić ¹, Jasmina S. Brborić ¹, Olivera A. Čudina ¹

- ¹ University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11000 Belgrade, Serbia;
- ² University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia.

* Corresponding author: milos.nikolic@medf.kg.ac.rs

Molecular docking studies of novel 9-aminoacridines with potential antimalarial activity

4th International Electronic Conference on Medicinal Chemistry 1-30 November 2018

sponsors:

Abstract: The aim of this study was design and molecular docking analysis of 15 novel 9-aminoacridine derivatives with potential antimalarial activity, based on inhibition of plasmepsins I and II. Interactions of 9-aminoacridine derivatives with plasmepsins were analyzed in AutoDock Vina program. Crystal structures of selected targets (PMI and PMII) were obtained from the Protein Data Bank (PDB ID **3QS1** and **2IGY**).

Derivatives with binding energies similar to the corresponding co-crystallized ligand KNI-10006 and which form some of the key binding interactions with PMI were **1** (*N*'-(acridin-9-yl)benzohydrazide), **6** (2-hydroxy-*N*'-(3-(trifluoromethyl)acridin-9-yl)benzohydrazide), **7** (*N*'-(3-(trifluoromethyl)acridin-9-yl)benzohydrazide), **8** (*N*-benzyl-3-(trifluoromethyl)acridin-9-amine), **10** (*N*-phenethyl-3-(trifluoromethyl) acridin-9-amine) and **15** (*N*-(3,4-dichlorophenyl)acridin-9-amine).

On the other hand, derivatives **1**, **2** (*N*'-(acridin-9-yl)-2-hydroxybenzohydrazide), **6**, **7** and **8** form some of the key binding interactions towards PMII with higher binding energies compared to the co-crystallized ligand.

Keywords: 9-aminoacridines; molecular docking; plasmepsins; antimalarial activity

Introduction

Hemoglobin degradation in a parasitic acidic vacuole represents a major metabolic pathway which is essential for the intraerythrocytic development of malaria parasites ¹.

Four members of a family of *P. falciparum* aspartic proteinases termed as digestive plasmepsins (PMI, PMII, PMIV and HAP) have shown to be able to degrade hemoglobin *in vitro*^{2,3}.

Previous studies have shown that antimalarial activity of acridine derivatives is based on inhibition of hemozoin formation⁴, inhibition of DNA topoisomerase⁵, folate metabolism inhibition⁶ and plasmepsin II inhibition⁷.

9-aminoacridine derivatives

Figure 1. Chemical structures of designed derivatives

4th International Electronic Conference on Medicinal Chemistry 1-30 November 2018

Crystal structure of KNI-10006 complex of Plasmepsin I (PMI) from *Plasmodium falciparum*

Figure 2. The key binding interactions of co-crystallized ligand KNI-10006 with PMI

4th International Electronic Conference on Medicinal Chemistry 1-30 November 2018

Results and discussion

Derivatives with binding energies similar to the corresponding co-crystallized ligand KNI-10006 which form some of the key binding interactions with PMI were:

- 1 (N'-(acridin-9-yl)benzohydrazide)
- 6 (2-hydroxy-N'-(3-(trifluoromethyl)acridin-9-yl)benzohydrazide)
- 7 (N'-(3-(trifluoromethyl)acridin-9-yl)benzohydrazide)
- 8 (N-benzyl-3-(trifluoromethyl)acridin-9-amine)
- **10** (*N*-phenethyl-3-(trifluoromethyl)acridin-9-amine)
- **15** (*N*-(3,4-dichlorophenyl)acridin-9-amine)

Derivative 1 (*N*'-(acridin-9-yl)benzohydrazide)

Derivative 1 forms four key binding interactions (Val76, Thr218, Asp215 and Asp32) with

Table 1. Binding energies of co-crystallizedligand and derivative 1

co-crystallized ligand		derivative 1	
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.0	1.	-8.7
2.	-8.4	2.	-8.6
3.	-8.3	3.	-8.5
4.	-8.1	4.	-8.4
5.	-8.0	5.	-8.3
6.	-7.9	6.	-8.3
7.	-7.7	7.	-8.2
8.	-7.7	8.	-8.2
9.	-7.6	9.	-8.1

Derivative 6 (2-hydroxy-*N*'-(3-(trifluoromethyl)acridin-9yl)benzohydrazide)

Derivative 6 forms six key binding interactions (Val76, Thr218, Asp32, Gly34, Tyr75 and

Figure 4. Docking of derivative 6 into PMI

Table 2. Binding energies of co-crystallizedligand and derivative 6

co-crystallized ligand		d	erivative 6
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.0	1.	-9.4
2.	-8.4	2.	-9.3
3.	-8.3	3.	-9.1
4.	-8.1	4.	-9.1
5.	-8.0	5.	-8.9
6.	-7.9	6.	-8.9
7.	-7.7	7.	-8.7
8.	-7.7	8.	-8.7
9.	-7.6	9.	-8.5

Derivative 7 (*N*'-(3-(trifluoromethyl)acridin-9-yl)benzohydrazide)

Derivative **7** forms five key binding interactions (Val76, Thr218, Asp215, Gly34 and Tyr75) with PMI.

Figure 5. Docking of derivative 7 into PMI

Table 3. Binding energies of co-crystallizedligand and derivative 7

co-crystallized ligand		d	erivative 7
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.0	1.	-9.1
2.	-8.4	2.	-9.0
3.	-8.3	3.	-8.8
4.	-8.1	4.	-8.8
5.	-8.0	5.	-8.8
6.	-7.9	6.	-8.6
7.	-7.7	7.	-8.5
8.	-7.7	8.	-8.4
9.	-7.6	9.	-8.4

Derivative 8 (N-benzyl-3-(trifluoromethyl)acridin-9-amine)

Derivative **8** forms six key binding interactions (Val76, Thr218, Asp215, Asp32, Ile300 and Tyr75) with PMI.

Figure 6. Docking of derivative 8 into PMI

Table 4. Binding energies of co-crystallizedligand and derivative 8

co-crystallized ligand		d	erivative 8
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.0	1.	-8.8
2.	-8.4	2.	-8.6
3.	-8.3	3.	-8.6
4.	-8.1	4.	-8.6
5.	-8.0	5.	-8.5
6.	-7.9	6.	-8.5
7.	-7.7	7.	-8.5
8.	-7.7	8.	-8.3
9.	-7.6	9.	-8.2

Derivative 10 (*N*-phenethyl-3-(trifluoromethyl)acridin-9-amine)

Derivative **10** forms six key binding interactions (Val76, Thr218, Asp215, Asp32, Gly34 and Tyr75) with PMI.

Table 5. Binding energies of co-crystallizedligand and derivative **10**

co-crystallized ligand		derivative 10	
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.0	1.	-8.3
2.	-8.4	2.	-8.2
3.	-8.3	3.	-8.1
4.	-8.1	4.	-8.1
5.	-8.0	5.	-8.1
6.	-7.9	6.	-8.0
7.	-7.7	7.	-7.9
8.	-7.7	8.	-7.7
9.	-7.6	9.	-7.7

Derivative 15 (*N*-(3,4-dichlorophenyl)acridin-9-amine)

Derivative **15** forms seven key binding interactions (Leu291, Val76, Thr218, Ile300, Asp215, Asp32 and Tyr75) with PMI.

Figure 8. Docking of derivative 15 into PMI

Table 6. Binding energies of co-crystallizedligand and derivative **15**

co-crystallized ligand		de	erivative 15
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.0	1.	-8.5
2.	-8.4	2.	-8.3
3.	-8.3	3.	-8.3
4.	-8.1	4.	-7.9
5.	-8.0	5.	-7.8
6.	-7.9	6.	-7.7
7.	-7.7	7.	-7.7
8.	-7.7	8.	-7.6
9.	-7.6	9.	-7.5

Crystal structure of achiral inhibitor complex of Plasmepsin II (PMII) from *Plasmodium falciparum*

Figure 9. The key binding interactions of co-crystallized achiral inhibitor with PMII

4th International Electronic Conference on Medicinal Chemistry 1-30 November 2018

Derivatives with similar binding energies compared to the achiral co-crystallized ligand which form some of the key binding interactions towards PMII were:

- **1** (*N*'-(acridin-9-yl)benzohydrazide)
- 2 (N'-(acridin-9-yl)-2-hydroxybenzohydrazide)
- 6 (2-hydroxy-N'-(3-(trifluoromethyl)acridin-9-yl)benzohydrazide)
- 7 (N'-(3-(trifluoromethyl)acridin-9-yl)benzohydrazide)
- 8 (N-benzyl-3-(trifluoromethyl)acridin-9-amine)

Derivative 1 (*N*'-(acridin-9-yl)benzohydrazide)

Derivative **1** forms four key binding interactions (Phe111, Trp41, Ile123 and Met75) with PMII.

Figure 10. Docking of derivative 1 into PMII

Table 7. Binding energies of co-crystallizedligand and derivative **1**

co-crystallized ligand		d	erivative 1
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.1	1.	-8.3
2.	-9.0	2.	-8.2
3.	-8.5	3.	-8.1
4.	-8.4	4.	-8.1
5.	-8.4	5.	-7.9
6.	-8.3	6.	-7.9
7.	-8.2	7.	-7.6
8.	-8.0	8.	-7.3
9.	-8.0	9.	-7.2

Derivative 2 (*N*'-(acridin-9-yl)-2-hydroxybenzohydrazide)

Derivative **2** forms five key binding interactions (Phe111, Trp41, Ile123, Met75 and Ile32) with P

Figure 11. Docking of derivative 2 into PMII

Table 8. Binding energies of co-crystallizedligand and derivative **2**

co-crystallized ligand		d	erivative 2
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.1	1.	-8.3
2.	-9.0	2.	-7.9
3.	-8.5	3.	-7.8
4.	-8.4	4.	-7.7
5.	-8.4	5.	-7.4
6.	-8.3	6.	-7.4
7.	-8.2	7.	-7.3
8.	-8.0	8.	-7.0
9.	-8.0	9.	-6.9

Derivative 6 (2-hydroxy-*N*'-(3-(trifluoromethyl)acridin-9yl)benzohydrazide)

Derivative 6 forms five key binding interactions (Phe111, Trp41, Ile123, Ile32 and Met75)

Figure 12. Docking of derivative 6 into PMII

Table 9. Binding energies of co-crystallizedligand and derivative 6

co-crystallized ligand		d	erivative 6
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.1	1.	-9.0
2.	-9.0	2.	-8.8
3.	-8.5	3.	-8.3
4.	-8.4	4.	-8.3
5.	-8.4	5.	-8.2
6.	-8.3	6.	-8.1
7.	-8.2	7.	-8.0
8.	-8.0	8.	-7.9
9.	-8.0	9.	-7.7

Derivative 7 (*N*'-(3-(trifluoromethyl)acridin-9-yl)benzohydrazide)

Derivative **7** forms four key binding interactions (Phe111, Trp41, Ile123 and Met75) with PMII.

SER

Figure 13. Docking of derivative 7 into PMII

 Table 10. Binding energies of co-crystallized
 ligand and derivative 7

co-crystallized ligand		d	erivative 7
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.1	1.	-8.9
2.	-9.0	2.	-8.6
3.	-8.5	3.	-8.3
4.	-8.4	4.	-8.0
5.	-8.4	5.	-7.9
6.	-8.3	6.	-7.9
7.	-8.2	7.	-7.7
8.	-8.0	8.	-7.6
9.	-8.0	9.	-7.6

Derivative 8 (N-benzyl-3-(trifluoromethyl)acridin-9-amine)

Derivative 8 forms four key binding interactions (Phe111, Trp41, Ile123 and Ile32) with

Figure 14. Docking of derivative 8 into PMII

Table 11. Binding energies of co-crystallizedligand and derivative 8

co-crystallized ligand		d	erivative 8
Mode	Binding energy (kcal/mol)	Mode	Binding energy (kcal/mol)
1.	-9.1	1.	-8.1
2.	-9.0	2.	-7.9
3.	-8.5	3.	-7.7
4.	-8.4	4.	-7.6
5.	-8.4	5.	-7.6
6.	-8.3	6.	-7.4
7.	-8.2	7.	-7.1
8.	-8.0	8.	-7.1
9.	-8.0	9.	-7.0

Conclusions

Derivative **15** forms seven key binding interactions with PMI, while derivative **2** forms five key binding interactions with PMII, although its binding energies were slightly higher in comparison to co-crystallized ligands. These two 9-aminoacridine derivatives may be a good candidates for further investigation as potential antimalarial drugs.

References:

- 1. Corminboeuf O, Dunet G, Hafsi M, Grimont J, Grisostomi C, Meyer S, Binkert C, Bur D, Jones A, Prade L, Brun R, Boss C. Inhibitors of Plasmepsin II-potential antimalarial agents. Bioorg Med Chem Lett. 2006; 16(24): 6194-9.
- 2. Prade L, Jones AF, Boss C, Richard-Bildstein S, Meyer S, Binkert C, Bur D. X-ray structure of plasmepsin II complexed with a potent achiral inhibitor. J Biol Chem. 2005; 280(25): 23837-43.
- 3. Jaudzems K, Tars K, Maurops G, Ivdra N, Otikovs M, Leitans J, Kanepe-Lapsa I, Domraceva I, Mutule I, Trapencieris P, Blackman MJ, Jirgensons A. Plasmepsin inhibitory activity and structure-guided optimization of a potent hydroxyethylamine-based antimalarial hit. ACS Med Chem Lett. 2014; 5(4): 373-7.
- 4. Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanistic update. Life Sci.2007 Feb 6;80(9):813-28.
- 5. Ferguson LR, Denny WA. Genotoxicity of non-covalent interactions: DNA intercalators. Mutat Res. 2007; 623(1-2): 14-23.
- 6. Santelli-Rouvier C, Pradines B, Berthelot M, Parzy D, Barbe J. Arylsulfonyl acridinyl derivatives acting on Plasmodium falciparum. Eur J Med Chem. 2004; 39(9): 735-44.
- 7. Azim MK, Ahmed W, Khan IA, Rao NA, Khan KM. Identification of acridinyl hydrazides as potent aspartic protease inhibitors. Bioorg Med Chem Lett. 2008; 18(9): 3011-5.

Acknowledgments

This work was financially supported by the Ministry of Education, Science and Technological Development, Belgrade, Republic of Serbia, as part of Project No.172041.

