

Proceedings

A general stereoselective approach to 1,2,4-triazepane-3-thiones/ones via reduction or reductive alkylation of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones ⁺

Anastasia A. Fesenko and Anatoly D. Shutalev *

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation

- * Correspondence: anatshu@gmail.com, shad@ioc.ac.ru
- + Presented at the 22nd International Electronic Conference on Synthetic Organic Chemistry, November 15 December 15, 2018.

Abstract: A general stereoselective approach to previously unknown 1,2,4-triazepane-3-thiones/ones based on reduction or reductive alkylation of readily available 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones has been developed. The approach involved treatment of tetrahydrotriazepines with sodium cyanoborohydride in MeOH at pH 3 or with sodium borohydride and excess of carboxylic acid in THF to give 1-unsubstituted or 1-alkyl-substituted 1,2,4-triazepane-3-thiones/ones, respectively. The latter were also prepared by reaction of 1-unsubstituted 1,2,4-triazepane-3-thiones/ones with sodium cyanoborohydride and aldehyde in MeOH in the presence of AcOH.

Keywords: 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones; 1,2,4-triazepane-3-thiones/ones; reduction; reductive alkylation

1. Introduction

Development of efficient approaches to rare heterocyclic scaffolds is a fundamental challenge of organic synthesis and medicinal chemistry. 1,2,4-Triazepines, particularly 1,2,4-triazepin-3-ones/ thiones are representatives of these scaffolds [1]. They are of great interest because of their diverse pharmacological properties. For example, 1,2,4-triazepin-3-ones/thiones are effective antagonists of parathyroid hormone 1 (PTH1R) [2] and holecystokinin hormone 2 (CCK₂) [3] receptors. Some of them possess antioxidant [4], antipsychotic [5], and HIV protease inhibitory activities [6].

The reported syntheses of 1,2,4-triazepin-3-ones/thiones include the reaction of β -isocyanato and β -isothiocyanato ketones with hydrazines [7, 8], condensation of semicarbazides and thiosemicarbazides with various 1,3-dicarbonyl compounds or their derivatives [4, 9], reaction of arylidene ketones with N₂H₄·2HNCS [10], addition of semicarbazides and thiosemicarbazides to α , β -unsaturated carbonyl compounds or their synthetic equivalents [11], reaction of γ -hydrazino-substituted amines with phosgene equivalents [3a, 6, 12], and intramolecular cyclization of 4-(γ -oxoalkyl)semicarbazides and 4-(γ -oxoalkyl)thiosemicarbazides or their derivatives [7b, 8e, 13]. Generally, these methods give access to 1,2,4-triazepin-2- ones/thiones with one or two double bonds in the 7-membered ring. Their saturated representatives, particularly 1,2,4-triazepan-3-ones/thiones **1** (Figure 1) remain practically inaccessible since the methods designed to produce these compounds mostly result in smaller-sized rings. For example, the condensation of 2-substituted thiosemicarbazides with 2,2-disubstituted malonyl chlorides was reported to give 5,7-dioxo-1,2,4-triazepane-3-thiones [14]. However, reinvestigation of this reaction showed that in most cases the only products formed were azetidine-2,4-diones [9h], with the exception of the reaction between 2-phenylthiosemicarbazide and 2,2-diethyl malonyl chloride affording the corresponding azetidine-2,4-dione (59%) along with 6,6-diethyl-5,7-dioxo-2-phenyl-1,2,4-triazepane-3-thione (2%).

Figure 1. General formula of 1,2,4-triazepane-3-thiones/ones 1 and structureof nonpeptidic HIV protease inhibitor 2.

The only relevant approach to triazepanes is based on the reaction of poorly available chiral non-racemic γ -hydrazino-substituted amines with phosgene equivalents to give the derivatives of 6-hydroxy-1,2,4-triazepan-3-ones. It should be noted that these compounds are the key precursors for preparation of potent nonpeptidic HIV protease inhibitors (e.g., **2**) [6].

Syntheses of triazepane-3-thiones/ones without functional groups at the 5, 6, and 7 positions, cyclic thiosemicarbazides and semicarbazides, have not been reported. Thus, the development of reliable and practical approaches to non-functionalized triazepane-3-thiones/ones is of great interest from the viewpoint of synthetic, theoretical, and medicinal chemistry. We rationalized that these compounds could be prepared by reductive transformations of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepin-2-ones/thiones. Previously, we developed effective syntheses of the latter based on acid-catalyzed cyclization of 4-(3-aryl-3-oxopropyl)(thio)semicarbazides and their hydrazones [8a, 13b] or base-promoted ring expansion of 3-amino-4-hydroxyhexahydropyrimidine-2-thiones [8b].

Here, we describe general stereoselective syntheses of previously unknown 1-unsubstituted or 1-alkyl substituted 1,2,4-triazepane-3-thiones/ones via reduction or reductive alkylation of tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones.

2. Results and discussion

Readily available 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones **3a-k** [8a,b, 13b] served as starting material for the present investigation. Among a large variety of reductants which could be used for C=N double bond reduction [15] we chose sodium cyanoborohydride [16]. We have found that triazepines **3a-k** smoothly reacted with NaBH₃CN (1.00–1.61 equiv.) in MeOH under slightly acidic conditions (pH about 3) at room temperature to give the corresponding 1-unsubstituted triazepanes **4a-k** in high yields (Scheme 1, Table 1). The pH was maintained by the addition of 2N HCl in MeOH with methyl orange as an internal indicator [17].

Scheme 1. Synthesis of 1-unsubstituted 1,2,4-triazepane-3-thiones/ones 4a-k.

The reduction rate strongly depended on the structure of triazepines **3a-k** and generally increased in the case of triazepin-3-ones compared with triazepine-3-thiones (Table 1; entry 5 vs entry 6; entry 8 vs entry 9; entry 10 vs entry 11), 5-monosubstituted triazepines compared with 5,5-disubstituted ones (entry 3 vs entries 4, 5, and 6; entry 7 vs entry 8), and monocyclic triazepines compared with bicyclic ones (entries 1 and 2 vs entries 4, 5, 6, and 8).

Entry	3	Х	R	R1	R ²	R ³	Equiv. of NaBH3CN	Time (h)	Product	Isolated yield (%)	<i>cis/trans</i> ratio ^b
1	3a	S	Me	Me	Н	Me	1.00	1	4a	93	_
2	3b	0	Me	Me	Н	Me	1.00	1	4b	54	-
3	3c ^c	S	Me	Н	CH2CH2CH2		1.01	1	4c	94	d
4	3d	S	Me	Me	CH2CH2CH2		1.48	3.17	4d	88	>99:1
5	3e	S	CH ₂ CI	H2CH2	CH ₂ CH ₂ CH ₂		1.61	3.17	4e	92	>99:1
6	3f	0	CH ₂ CH ₂ CH ₂		CH ₂ CH ₂ CH ₂		1.49	1	4f	91	99:1
7	3g ^e	S	Me	Н	CH2CH2CH2CH2		1.00	1	4g	84	_f
8	3h	S	Me	Me	CH2CH2CH2CH2		1.50	1	4h	93	98:2
9	3i	0	Me	Me	CH2CH2CH2CH2		1.01	1	4i	94	88:12
10	3j	S	Ph	Н	Н	Ph	1.51	3	4j	99	26:74
11	3k	0	Ph	Н	Н	Ph	1.00	1	4k	93	18:82

Table 1. Synthesis of 1-unsubstituted 1,2,4-triazepane-3-thiones/ones **4a-k** by reduction of **3a-k** with NaBH₃CN in MeOH at room temperature (pH 3).^{*a*}

^a Level of conversion of the starting material is 100%.

^b According to ¹H NMR spectroscopic data for the crude product.

^c A 92:8 mixture of (5*R**,5a*R**)- and (5*S**,5a*R**)-diastereomers (ref. 8b).

^{*d*} A nearly pure $(5R^*, 6R^*, 7R^*)$ -diastereomer (> 96%).

^e A 60:40 mixture of (5*R**,5a*R**)- and (5*S**,5a*R**)-diastereomers (ref. 8b).

^f A mixture of (5*R**,6*R**,7*R**)- and (5*R**,6*S**,7*S**)-diastereomers in a ratio of 60:40, respectively.

Reduction of the C=N bond in **3a-k** results in formation of a new stereocenter at the C7 atom. Diastereoselectivity of this reaction varies from good to excellent (Table 1). Due to strong 1,2-asymmetric induction bicyclic triazepines **3d-f**,**h** gave practically single ($6R^*$,7 S^*)-diastereomers of triazepanes **4d-f**,**h** with *cis*-relationship between two rings (*cis*/*trans* \ge 98:2) (entries 4–6, and 8). With triazepine **3i** the reaction diastereoselectivity slightly decreased, and a mixture of *cis*- and *trans*-isomers of **4i** was obtained in a ratio of 88:12 (entry 9). Reduction of diphenyl-substituted monocyclic triazepines **3j**,**k** showed further decrease in selectivity to result in mixtures of *cis*- and *trans*-diastereomers of triazepanes **4j**,**k** in a ratio of 74:26 and 82:18, respectively (entries 10 and 11).

Next, we studied reduction of bicyclic 5-methyl triazepines **3c** and **3g** possessing two stereocenters which were obtained as mixtures of two diastereomers in a ratio of 92:8 and 60:40, respectively [8b]. We have found that practically single $(5R^*, 6R^*, 7R^*)$ -diastereomer (> 96%) of **4c** formed in 94% yield from **3c** (entry 3) and a 60:40 mixture of $(5R^*, 6R^*, 7R^*)$ - and $(5R^*, 6S^*, 7S^*)$ -diastereomers of **4g** formed in 84% yield from **3g** (entry 7). With both triazepines **3c** and **3g** strong 1,2-asymmetric induction led exclusively to triazepanes **4c**,**g** with *cis*-relationship between two rings. Based on these data, the relative configuration of the major and minor isomers of starting compounds **3c**,**g** could be unambiguously assigned as $(5R^*, 5aR^*)$ and $(5S^*, 5aR^*)$, respectively [8b].

We suppose that the first step of the reduction of triazepines **3a-k** under the described conditions is protonation of either the oxo/thioxo-group or the imino nitrogen affording hydrochlorides **5a-k** or **6a-k**, respectively (Scheme 2).

The DFT calculations performed at the B3LYP/6-311++G(d,p) level of theory for cations **5d,h,i,k** and **6d,h,i,k** with pseudo axial and pseudo equatorial orientation of the 5-Ph group (for **5k** and **6k**) or C6-CH₂ bond (for **5d,h,i** and **6d,h,i**) using the PCM showed that the *N*-protonated cations **6d,h,i,k** are significantly more stable than the corresponding *O*- or *S*-protonated cations **5d,h,i,k** (1.8–8.1

kcal/mol in MeOH). Therefore, formation of **5a-k** can be excluded. The final step of the reaction is hydride transfer from NaBH₃CN to the initially generated hydrochlorides **6a-k** to give the target products **4a-k**.

Scheme 2. A plausible pathway for the reduction of 3a-k into 4a-k.

High diastereoselectivity in the reduction of **3c-k** can be explained in terms of steric approach control. The equatorial attack of the reducing reagent to the imine carbon of intermediate cations **6c-k** is preferable. The axial attack is complicated by van der Waals repulsions with two axial cyclohexane hydrogens in **6g-i**, two pseudo axial cyclopentane hydrogens in **6c-f** or pseudo axial 5-H hydrogen in **6j,k**. This conclusion is confirmed by the DFT B3LYP/6-311++G(d,p) optimized geometries (in MeOH) of the most stable conformers of cations **6d,h,i,k** with pseudo axial and pseudo equatorial position of the 5-Ph group (for **6k**) or C6-CH₂ bond (for **6d,h,i**). Three representative examples with favored (**a**) and unfavored (**b**) attack of BH₃CN-anion to the equatorial conformers of cations **6d,i,k** are shown in Figure 2.

Figure 2. Favored (**a**) and unfavored (**b**) approach of BH₃CN-anion to *N*-protonated triazepines: **6i** (i), **6d** (ii), and **6k** (iii).

Crude triazepanes **4a-k** were purified by crystallization (for **4a,d-f,h-j**) or using silica gel column chromatography followed by crystallization (for **4b,c,g,k**). It should be noted that after purification triazepanes **4c-f,h,j,k** were obtained as practically single diastereomers ($dr \ge 95\%$).

The structure of compounds **4a-k** was established by spectroscopic data. The ¹H NMR spectra of **4a-k** in DMSO-*d*₆ show a long-range coupling between the (thio)amide N(2)H and N(4)H protons ($^{4}J = 2.0-2.5$ Hz) that indicates their one-plane W-shaped arrangement. Similar long-range couplings are characteristic of *N*-unsubstituted (thio)ureide-containing heterocycles, e.g., 2,3,4,5-tetrahydro- and 2,3-dihydro-1*H*-1,3-diazepin-2-ones [18], hexahydro- and 1,2,3,4-tetrahydropyrimidine-2-thiones/ones [18, 19], 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones [8a,b, 13b]. Signal of the N(1)H proton in **4a-k** appears as a doublet of doublets at 4.23–6.36 ppm with vicinal couplings

 ${}^{3}J_{\text{N}(1)\text{H},\text{N}(2)\text{H}} = 0-3.5 \text{ and } {}^{3}J_{\text{N}(1)\text{H},\text{H}-7} = 4.2-11.1 \text{ Hz}$. The relative configurations of the stereogenic centers in **4c,d,f,i-k** and the minor isomers of **4g,h** were assigned based on the analysis of couplings between protons of the triazepane ring. For example, high values of vicinal couplings between the H-5 and H-6 protons (10.5 Hz) and between the H-7 and N(1)H protons (10.8 Hz) in **4c** indicate that these protons are antiperiplanar, and therefore, this compound has ($5R^*, 6R^*, 7R^*$)-configuration. The *cis*-relationship between the cyclopentane and triazepane rings in **4c** is also confirmed by a relatively high value of vicinal coupling between the H-6 and H-7 protons (8.2 Hz). High values of vicinal couplings ${}^{3}J_{\text{H}-5,\text{H}-6} = 10.5 \text{ Hz}$ and ${}^{3}J_{\text{H}-6,\text{H}-7} = 10.8 \text{ Hz}$ observed in the ${}^{1}\text{H}$ NMR spectrum of the minor diastereomer of **4j** prove that two phenyl groups have *cis*-arrangement. The major diastereomer of **4j** has *trans*-configuration with a pseudo axial orientation of the 5-Ph group (${}^{3}J_{\text{N}(4)\text{H},\text{H}-5} = 5.2, {}^{3}J_{\text{H}-5,\text{H}-6} = 2.5 \text{ Hz}$) and a pseudo equatorial orientation of the 7-Ph group (${}^{3}J_{\text{H}-6,\text{H}-7} = 9.2 \text{ Hz}$).

Two alternative procedures were developed for preparation of 1-alkyl-substituted 1,2,4-triazepane-3-thiones/ones. The first involves reductive alkylation of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones **3** with sodium borohydride in carboxylic acid media [20]. We found that monocyclic triazepines **3a,b** smoothly reacted with NaBH₄ (6 equiv.) in the presence of AcOH or EtCOOH (60.3–61.9 equiv.) in THF at room temperature for 23.5–24 h to give the corresponding 1-ethyl- or 1-propyltriazepanes **7a,b,e,f** in 50–90% yields (Scheme 3; Table 2, entries 1, 2, 6, and 7).

Scheme 3. Synthesis of 1-alkyl-substituted 1,2,4-triazepane-3-thiones/ones 7a-n by the reductive alkylation.

Under similar conditions (THF, rt, 24 h), the reaction of diphenyl triazepine **3k** with NaBH₄ (5.9 equiv.) in the presence of AcOH (63.4 equiv.) gave a mixture of starting material **3k** and 1-ethyltriazepane **7n** in a ratio of 21:79, respectively. This reaction was completed with 10 equivalents of NaBH₄ and 108.3 equivalents of AcOH to produce the target **7n** in 94% yield with excellent *trans*-diastereoselectivity (*trans:cis* = 98:2, Table 2, entry 16). Higher stereoselectivity in the reduction of **3k** with NaBH(OAc)₃, in situ generated from NaBH₄ and AcOH [20a], compared with NaBH₃CN (*trans:cis* = 82:18, Table 1, entry 11) can be explained in terms of steric approach control (see Figure 2) considering a greater steric bulk of reducing reagent in the first case.

Cyclohexane-fused triazepine **3g** [a 60:40 mixture of $(5R^*,5aR^*)$ - and $(5S^*,5aR^*)$ -isomers] reacted with NaBH₄ (6.1 equiv.) in the presence of AcOH (65.4 equiv.) or EtCOOH (62.2 equiv.) in THF (rt, 24 h) with very high stereoselectivity to give mixtures $(5R^*,6R^*,7R^*)$ - and $(5S^*,6R^*,7R^*)$ -diastereomers (*cis*-relationship between two rings) of triazepanes **7k**,**l** in a ratio of 61:39 and 58:42, respectively (entries 13 and 14). Reduction of cyclopentane-fused triazepine **3c** also proceeded with very high stereoselectivity but the reaction rate relatively decreased. Under optimized conditions, the reaction between this compound [a 92:8 mixture of $(5R^*,5aR^*)$ - and $(5S^*,5aR^*)$ -isomers] and NaBH₄ (10 equiv.) in the presence of AcOH (104 equiv.) (THF, rt, 24 h) afforded a 91:9 mixture of $(5R^*,6R^*,7R^*)$ and $(5S^*,6R^*,7R^*)$ -diastereomers of **7g** with *cis*-fused rings (entry 8).

The alternative approach to 1-alkyl-substituted 1,2,4-triazepane-3-thiones/ones 7 involves reductive alkylation of their 1-unsubstituted analogs 4 under the action of aldehyde and NaBH₃CN in the presence of AcOH (Scheme 3). Treatment of **4a,c,e,h** with aliphatic aldehydes (5.8–6.4 equiv.), NaBH₃CN (1.5–1.6 equiv.) and AcOH (1.5 equiv.) in MeOH at room temperature for 2 h resulted in the corresponding triazepanes **7b,c,g,h,j,m** in high yields (Table 2, entries 3, 4, 9, 10, 12, and 15). Under the same conditions, compounds **4a,e** were reacted with benzaldehyde (6.1 equiv.), NaBH₃CN (3.1–3.6 equiv.) and AcOH (3.0–3.1 equiv.) to give triazepanes **7d,i** in 90 and 93% yields, respectively (entries 5 and 11).

Entry	3 or 4	х	R	R ¹	R ²	R ³	R4	Reaction conditions ^b	7	Yield (%) ^c	dr ^d
1	3a	S	Me	Me	Н	Me	Me	NaBH4 (6.0), AcOH (61.1), THF, rt, 24 h	7a	89	_
2	3a	S	Me	Me	Н	Me	Et	NaBH4 (6.0), EtCOOH (61.9), THF, rt, 24 h	7t	90	_
3	4a	S	Me	Me	Н	Me	Et	NaBH3CN (1.5), EtCHO (5.8), AcOH (1.5), MeOH, rt, 2 h	7t	90	-
4	4a	S	Me	Me	Н	Me	Pr	NaBH3CN (1.5), PrCHO (6.0), AcOH (1.5), MeOH, rt, 2 h	7c	95	-
5	4a	S	Me	Me	Н	Me	Ph	NaBH3CN (3.6), PhCHO (6.1), AcOH (3.0), MeOH, rt, 2 h	70	90	-
6	3b	0	Me	Me	Н	Me	Me	NaBH4 (6.0), AcOH (60.3), THF, rt, 24 h	7e	50	_
7	3b	0	Me	Me	Н	Me	Et	NaBH4 (6.0), EtCOOH (60.6), THF, rt, 23.5	h 7f	50	_
8	3c ^e	S	Me	Н	CH ₂ CH ₂	2CH2	Me	NaBH4 (10.1), AcOH (104.1), THF, rt, 24 h	7g	31	f
9	4c	S	Me	Н	CH ₂ CH ₂	2CH2	Me	NaBH3CN (1.6), MeCHO (6.4), AcOH (1.5)	, 7g	87	>99:1
								MeOH, rt, 2 h			
10	4e	S	CH ₂ CH ₂ CH ₂		CH2CH2CH2		Et	NaBH3CN (1.5), EtCHO (6.1), AcOH (1.5),	7ł	95	>99:1
								MeOH, rt, 2 h			
11	4e	S CH ₂ CH ₂ CH ₂		CH ₂ CH ₂ CH ₂		Ph	NaBH3CN (3.1), PhCHO (6.1), AcOH (3.1),		93	>99:1	
								MeOH, rt, 2 h			
12	4f g	4f ^g O CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂		2CH2	Et	NaBH3CN (1.5), EtCHO (6.2), AcOH (1.5),	7j	68	99:1		
								MeOH, rt, 2 h			
13	$3\mathbf{g}^h$	S	Me	Н	CH ₂ CH ₂	CH2CH2	Me	NaBH4 (6.1), AcOH (65.4), THF, rt, 24 h	71	85	<i>i</i>
14	$3\mathbf{g}^h$	S	Me	Н	CH ₂ CH ₂	CH2CH2	Et	NaBH4 (6.1), EtCOOH (62.2), THF, rt, 24 h	71	68	j
15	$\mathbf{4h}^k$	S	Me	Me	CH ₂ CH ₂	CH2CH2	Et	NaBH3CN (1.5), EtCHO (6.0), AcOH (1.5),	7r	n 96	>99:1
								MeOH, rt, 2 h			
16	3k	0	Ph	Н	Н	Ph	Me	NaBH4 (10.1), AcOH (208.4), THF, rt, 24 h	7r	94	2:98

Table 2. Synthesis of 1-substituted 1,2,4-triazepane-3-thiones/ones **7a-n** by the reductive alkylation of **3a-c,g,k** and **4a,c,e,f,h**.^{*a*}

^{*a*} Level of conversion of the starting material is 100%.

^b Number in parentheses is the amount of equivalents.

^c Isolated yield.

^d dr – *cis/trans* diastereomeric ratio according to ¹H NMR spectroscopic data for the crude product.

^e A 92:8 mixture of (5R*,5aR*)- and (5S*,5aR*)-diastereomers (ref. 8b).

^f A 91:9 mixture of (5*R**,6*R**,7*R**)- and (5*S**,6*R**,7*R**)-diastereomers.

8 A 99:1 mixture of (6R*,7S*)- and (6R*,7R*)-diastereomers.

^{*h*} A 60:40 mixture of (5*R**,5*aR**)- and (5*S**,5*aR**)-diastereomers (ref. 8b).

^{*i*} A 61:39 mixture of (5*R**,6*R**,7*R**)- and (5*S**,6*R**,7*R**)-diastereomers.

^{*j*} A 58:42 mixture of (5*R**,6*R**,7*R**)- and (5*S**,6*R**,7*R**)-diastereomers.

^k A 98:2 mixture of (6*R**,7*S**)- and (6*R**,7*R**)-diastereomers.

Generally, the two-step approach to 1-alkyl-substituted 1,2,4-triazepane-3-thiones/ones ($3 \rightarrow 4 \rightarrow 7$) was more effective. For instance, following this method compound 7g was obtained from 3c in 82% overall yield, while direct reductive alkylation of 3c with the NaBH₄/AcOH system gave 7g only in 31% yield.

The structures of compounds **7a-n** were confirmed by spectroscopic data. The relative configurations of the stereogenic centers in **7g-n** were assigned by analysis of proton coupling constants in the triazepane ring as described above for compounds **4**.

3. Conclusions

A convenient stereoselective synthesis of *N*-unsubstituted 1,2,4-triazepane-3-thiones/ones based on the reduction of readily available 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones with sodium cyanoborohydride in MeOH at pH 3 has been developed. Stereochemistry of the reduction was explained in terms of steric control approach of BH₃CN-anion to N1-protonated substrate. The obtained 1,2,4-triazepane-3-thiones/ones were converted into 1-alkyl-substituted derivatives by reductive alkylation with sodium cyanoborohydride and aldehyde in MeOH in the presence of AcOH. Alternatively, 1-alkyl-1,2,4-triazepane-3-thiones/ones were prepared with high stereoselectivity by treatment of tetrahydrotriazepines with sodium borohydride and excess of carboxylic acid in THF.

References

- For reviews on 1,2,4-triazepines, see: (a) J. T. Sharp, in *Comprehensive Heterocyclic Chemistry*, ed. A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984, Vol. 7, pp 593–651; (b) T. Tsuchiya, in *Comprehensive Heterocyclic Chemistry II*, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Elsevier, Oxford, 1996, Vol. 9, pp 309–331; (c) G. I. Yranzo and E. L. Moyano, in *Comprehensive Heterocyclic Chemistry III*, ed. A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven and R. J. K. Taylor, Elsevier, Amsterdam, 2008, Vol. 13, pp 399–430; (d) N. P. Peet, in *The Chemistry of Heterocyclic Compounds*, ed. A. Rosowsky, John Wiley, New York, 1984, Vol. 43, Part 2, pp 719–842; (e) G. Léna and G. Guichard, *Curr. Org. Chem.*, 2008, **12**, 813–835; (f) K. M. Elattar, M. A. Abozeid, I. A. Mousa and A. El-Mekabaty, *RSC Advances*, 2015, **5**, 106710–106753.
- I. M. McDonald, C. Austin, I. M. Buck, D. J. Dunstone, J. Gaffen, E. Griffin, E. A. Harper, R. A. D. Hull, S. B. Kalindjian, I. D. Linney, C. M. R. Low, D. Patel, M. J. Pether, M. Raynor, S. P. Roberts, M. E. Shaxted, J. Spencer, K. I. M. Steel, D. A. Sykes, P. T. Wright and W. Xun, *J. Med. Chem.*, 2007, **50**, 4789–4792.
- (a) I. M. McDonald, C. Austin, I. M. Buck, D. J. Dunstone, E. Griffin, E. A. Harper, R. A. D. Hull, S. B. Kalindjian, I. D. Linney, C. M. R. Low, M. J. Pether, J. Spencer, P. T. Wright, T. Adatia and A. Bashall, *J. Med. Chem.*, 2006, 49, 2253–2261; (b) K. Kaur and T. T. Talele, *J. Mol. Graphics Modell.*, 2008, 27, 409–420.
- 4. M. Sankaran, C. Kumarasamy, U. Chokkalingam and P. S. Mohan, *Bioorg. Med. Chem. Lett.*, 2010, 20, 7147–7151.
- (a) S. M. Ibrahim, M. Abo-Kul, M. K. Soltan, W. Barakat and A. S. Helal, *Med. Chem.*, 2014, 4, 351–356; (b) S. M. Ibrahim, M. M. Baraka, O. I. El-Sabbagh, H. Kothayer, *Med. Chem. Res.*, 2013, 22, 1488–1496.
- (a) C. Zhao, H. L. Sham, M. Sun, V. S. Stoll, K. D. Stewart, S. Lin, H. Mo, S. Vasavanonda, A. Saldivar, C. Park, E. J. McDonald, K. C. Marsh, L. L. Klein, D. J. Kempf and D. W. Norbeck, *Bioorg. Med. Chem. Lett.*, 2005, **15**, 5499–5503; (b) H. L. Sham, C. Zhao, K. D. Stewart, D. A. Betebenner, S. Lin, C. H. Park, X.-P. Kong, W. Rosenbrook, T. Herrin, D. Madigan, S. Vasavanonda, N. Lyons, A. Molla, A. Saldivar, K. C. Marsh, E. McDonald, N. E. Wideburg, J. F. Denissen, T. Robins, D. J. Kempf, J. J. Plattner and D. W. Norbeck, *J. Med. Chem.*, 1996, **39**, 392–397; (c) C. N. Hodge, C. H. Fernandez, P. K. Jadhav and P. Y. Lam, WO 9422840, 1994; *Chem. Abs.*, 1994, **123**, 33104.
- (a) R. Lantzsch and D. Arlt, Synthesis, 1977, 756–757; (b) W. A. Mosher and R. B. Toothill, J. Heterocycl. Chem., 1971, 8, 209–214.
- (a) A. A. Fesenko, M. S. Grigoriev and A. D. Shutalev, *Tetrahedron*, 2016, 72, 7952–7967; (b) A. A. Fesenko and A. D. Shutalev, *Tetrahedron*, 2016, 72, 2560–2573; (c) N. A. Danilkina, L. E. Mikhaylov and B. A. Ivin, *Chem. Heterocycl. Compd.*, 2011, 47, 886–900; (d) B. Rezessy, Z. Zubovics, J. Kovács and G. Tóth, *Tetrahedron*, 1999, 55, 5909–5922; (e) P. Richter and K. Steiner, in *Studies in Organic Chemistry*, ed. H. C. van der Plas, L. Ötvös and M. Simonyi, Elsevier, Amsterdam, 1984, Vol. 18 (Bio-Organic Heterocycles), pp 217–220; (f) R. Neidlein and W. D. Ober, *Monatsh. Chem.*, 1976, 107, 1251–1258; (g) G. Zigeuner, A. Fuchsgruber and F. Wede, *Monatsh. Chem.*, 1975, 106, 1495–1497.
- (a) M. M. Hassan, E. S. Othman and M. Abass, *Res. Chem. Intermed.*, 2013, **39**, 1209–122; (b) A. Chaudhary, S. C. Joshi and R. V. Singh, *Main Group Met. Chem.*, 2004, **27**, 59–70; (c) S. S. Ibrahim, Z. M. El-Gendy, H. A. Allimony and E. S. Othman, *Chem. Papers*, 1999, **53**, 53–64; (d) A. Hasnaoui, J.–P. Lavergne and P.

Viallefont, *Recl. Trav. Chim. Pays-Bas*, 1980, **99**, 301–306; (e) A. Hasnaoui, J.–P. Lavergne and P. Viallefont, *J. Heterocycl. Chem.*, 1978, **15**, 71–75; (f) B. Stanovnik and M. Tišler, *Naturwissenschaften*, 1965, **52**, 207; (g) G. Losse and W. Farr, *J. Prakt. Chem.*, 1959, **8**, 298–305; (h) A. Ebnöther, E. Jucker, E. Rissi, J. Rutschmann, E. Schreier, R. Steiner, R. Süess and A. Vogel, *Helv. Chim. Acta*, 1959, **42**, 918–955; (i) G. Losse, W. Hessler, A. Barth, *Chem. Ber.*, 1958, **91**, 150–157.

- 10. W. Seebacher, G. Michl and R. Weis, Tetrahedron Lett., 2002, 43, 7481–7483.
- (a) A. A. Hassan, T. M. Bebair, M. El-Gamal, J. Chem. Res., 2014, 27–31; (b) A. A. Aly, A. A. Hassan, E. M. El-Sheref, M. A. Mohamed and A. B. Brown, J. Heterocycl. Chem., 2008, 45, 521–526; (c) A. A. El-Helby, M. A. Amin, M. M. El-Sawah, A. H. Bayoni, A. S. El-Azab, F. F. Sherbiny, J. Saudi Chem. Soc., 2006, 10, 77–93; (d) H. Abdel-Ghany, A. Khodairy, H. M. Moustafa, Synth. Commun., 2000, 30, 1257–1268; (e) M. Kobayashi, J. Tanaka, T. Katori, M. Marsuura, M. Yamashita and I. Kitagawa, Chem. Pharm. Bull., 1990, 38, 2409–2418.
- 12. R. S. Hosmane, V. S. Bhadti and B. B. Lim, Synthesis, 1990, 1095–1100.
- 13. (*a*) L. A. Trafimova, M. O. Zimin and A. D. Shutalev, *J. Chem. Res.*, 2017, **41**, 149–156; (*b*) A. A. Fesenko and A. D. Shutalev, *Tetrahedron*, 2015, **71**, 9528–9543.
- 14. (*a*) G. Losse and H. Uhlig, *Chem. Ber.*, 1957, **90**, 257–260; (*b*) G. Losse, E. Wottgen and H. Just, *J. Prakt. Chem.*, 1958, **7**, 28–37.
- For selected reviews, see: (a) R. O. Hutchins and M. K. Hutchins, in *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, Vol. 8, pp 25–78; (b) R. Hemmer and W. Lürken, in *Houben-Weyl Methods of Organic Chemistry*, Thieme, Stuttgart, 1992, Vol. E 16d, pp 646–1234; (c) *Modern Reduction Methods*, ed. P. G. Andersson and I. J. Munslow, Wiley-VCH Verlag, Weinheim, 2008; (d) T. C. Nugenta and M. El-Shazly, *Adv. Synth. Catal.*, 2010, **352**, 753–819; (e) R. W. Layer, *Chem. Rev.*, 1963, **63**, 489–510; (f) R. P. Tripathi, S. S. Verma, J. Pandey and V. K. Tiwar, *Curr. Org. Chem.*, 2008, **12**, 1093–1115.
- (a) R. O. Hutchins, M. K. Hutchins and M. L. Crawley, in *e-EROS: Encyclopedia of Reagents for Organic Synthesis*, John Wiley & Sons, 2007, doi:10.1002/047084289X.rs059.pub2; (b) J. Seyden-Penne, *Reductions by the Alumino- and Borohydrides in Organic Synthesis*, 2nd ed.; Wiley-VCH, New York, 1997; (c) C. F. Lane, *Synthesis*, 1975, 135–146; (d) R. O. Hutchins and N. R. Natale, *Org. Prep. Proced. Int.*, 1979, **11**, 201–246; (e) R. F. Borch, M. D. Bernstein and H. D. Durst, *J. Am. Chem. Soc.*, 1971, **93**, 2897–2904.
- 17. Using compound **3a** as an example, we demonstrated that, in the absence of HCl, the reduction with NaBH₃CN (1.5 equiv) in MeOH proceeded neither at room temperature (1.5 h) nor under reflux (1 h).
- (a) A. A. Fesenko, M. S. Grigoriev and A. D. Shutalev, J. Org. Chem., 2017, 82, 8085–8110; (b) A. A. Fesenko and A. D. Shutalev, *Tetrahedron Lett.*, 2014, 55, 1416–1420; (c) A. A. Fesenko, A. A. Trafimova and A. D. Shutalev, Org. Biomol. Chem., 2012, 10, 447–462; (d) A. A. Fesenko and A. D. Shutalev, *Tetrahedron*, 2011, 67, 6876–6882; (e) A. A. Fesenko, M. L. Tullberg and A. D. Shutalev, *Tetrahedron*, 2009, 65, 2344–2350.
- (a) P. A. Solovyev, A. A. Fesenko and A. D. Shutalev, *J. Fluor. Chem.*, 2016, **182**, 28–33; (b) A. A. Fesenko and A. D. Shutalev, *Tetrahedron*, 2014, **70**, 5398–5414; (c) A. A. Fesenko and A. D. Shutalev, *J. Org. Chem.*, 2013, **78**, 1190–1207; (d) A. A. Fesenko, E. A. Dem'yachenko, G. A. Fedorova and A. D. Shutalev, *Monatsh. Chem.*, 2013, **144**, 351–359; (e) A. A. Fesenko, P. A. Solovyev and A. D. Shutalev, *Tetrahedron*, 2010, **66**, 940–946; (f) A. A. Fesenko and A. D. Shutalev, *Tetrahedron Lett.*, 2007, **48**, 8420–8423; (g) A. D. Shutalev and N. N. Kurochkin, *Mendeleev Commun.*, 2005, **15**, 70–72.
- For reviews on this reductive system, see: (a) G. W. Gribble and C. F. Nutaitis, Org. Prep. Proced. Int., 1985, 17, 317–384; (b) A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff and R. D. Shah, J. Org. Chem., 1996, 61, 3849–3862; (c) E. W. Baxter and A. B. Reitz, Org. React., 2002, 59, 1–714; (d) A. F. Abdel-Magid and S. J. Mehrman, Org. Proc. Res. Dev., 2006, 10, 971–1031.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).