

Public Health Messages Associated with the Low Exposure Category of the UV Index Need Reconsideration

M Lehmann¹, AB Pfahlberg¹, H Sandmann², W Uter¹ and O Gefeller¹ ¹Dept. Med. Inf., Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany ²uv-tech consulting, 24106 Kiel, Germany IECEHS-1, 15/11/18-07/12/18

- ultraviolet radiation (UVR) carcinogenic according to IARC¹
- substantial proportion of cases of skin cancer caused by overexposure²
- skin cancer largely preventable using appropriate sun protection
- introduction of Global Solar UV Index (UVI) in 1995 by WHO, WMO, UNEP and ICNIRP³
 - unitless quantity proportional to daily max. 30-min moving average of intensity of erythemally weighted⁴ solar UV irradiance

¹ International Agency for Research on Cancer (2012) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100D: Solar and Ultraviolet Radiation.

² Lucas RM et al. (2008) Estimating the global disease burden due to ultraviolet radiation exposure. Int J Epidemiol 37: 654 – 667.

³ International Commission on Non-Ionizing Radiation Protection (1995) Global Solar UV Index - A Joint Recommendation of the WHO, WMO, UNEP and the ICNIRP.

⁴ International Commission on Illumination (1999) CIE S007/E-1998 Erythema reference action spectrum and standard erythema dose.

Figure: Sun protection scheme as recommended by WHO⁵

⁵ World Health Organization (2002) Global Solar UV Index: A Practical Guide.

Figure: Sun protection scheme for low exposure category as recommended by WHO⁵

- validation of adequacy of UVI health messages unclear
- our focus: low exposure category (UVI values 0-2) with official health message 'No protection required'
- aim of our study: evaluation of potential erythemal effects of exposure to solar UVR on days with low UVI values
 - special focus on differences in susceptibility to UVR-induced damage between distinct skin phototypes

⁵ World Health Organization (2002) Global Solar UV Index: A Practical Guide.

Materials and Methods

- Data Source
 - diurnal courses of erythemal irradiance for days with low UVI values measured at nine stations of the German solar UV monitoring network in the years 2007-2016
- Statistical Analysis
 - Transformation of time base from Coordinated World Time (UTC) to Local Solar Time (LST), where solar noon always occurs at 12:00
 - erythemal irradiance data were integrated over the following time intervals to calculate erythemal doses received therein
 - around solar noon: 11:45-12:15 (0.5 h), 11:30-12:30 (1 h), 11:00-13:00 (2 h), 10:30-13:30 (3 h), 10:00-14:00 (4 h)
 - before noon: 8:00-10:00 (2 h), 7:30-10:30 (3 h)
 - after noon: 14:00-16:00 (2 h), 13:30-16:30 (3 h)
 - · full day: sunrise-sunset

- Statistical Analysis (ctd.)
 - comparison of erythemal doses with minimal erythemal doses (MEDs) of Fitzpatrick⁶ skin types I through IV
 - MED: erythemal dose which produces minimal perceptible skin reddening (solar erythema) 24 h after exposure

 \rightarrow short-time maximum dose that should not be exceeded to prevent detrimental effects of UVR on the human body^7

Skin type	Tan	Burn	Minimal Erythemal Dose (SED)
I	Never	Always	2.0
II	Sometimes	Sometimes	2.5
III	Always	Rarely	4.0
IV	Always	Never	6.0

Table: Characteristics of skin types according to Fitzpatrick⁶ and corresponding minimal erythemal doses (MEDs) according to ICNIRP⁸ in terms of Standard Erythema Doses (1SED = 1 Standard Erythema Dose = 100 Jm^{-2} weighted with the CIE erythema reference action spectrum⁴)

- ⁴ International Commission on Illumination (1999) CIE S007/E-1998 Erythema reference action spectrum and standard erythema dose.
- ⁶ Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through IV. Arch Dermatol. 124: 869 871
- ⁷ Feister U, Laschewski G, Grewe RD (2011) UV index forecasts and measurements of health-effective radiation. J Photochem Photobiol B 102: 55 68

⁸ International Commission on Non-Ionizing Radiation Protection (2010) ICNIRP statement on protection of workers against ultraviolet radiation. Health Phys. 99(1): 66 – 87

Dataset Description

- UVI 0: n=4,961 days
 - most frequent months of occurence: December (n=1,949; 39.3 %), January (n=1,515; 30.5 %) and November (n=939; 18.9 %)
- UVI 1: n=6,117 days
 - most frequent months of occurence: February (n=1,526; 24.9 %), November (n=1,281; 20.9 %) and October (n=1,047; 17.1 %)
- UVI 2: n=3,353 days
 - most frequent months of occurence: March (n=1,061; 31.6 %) and October (n=913; 27.2 %)

Comparison of Computed Erythemal Doses with MEDs

- UVI 0
 - median erythemal doses are well below 1SED for all intervals considered, except for full day interval
 - full day: MEDs of skin types III and IV never exceeded, and for skin types I and II in only 1.23% and 0.04% of days, respectively
- UVI 1
 - median erythemal dose from 4 h-interval around noon and full day interval exceed MEDs of skin types I and I+II, respectively
 - 2 h and 3 h intervals around noon yield doses greater than MEDs of skin types I and II for more than two thirds of days
- UVI 2
 - 2 h around noon: doses resulting from 87.89% of days exceed MED of skin type I, but MED of skin type IV not exceeded on any day
 - 4 h around noon: interval yields doses exceeding MEDs of skin type III and IV for 84.01 % and 26.39 % of days, respectively, and >99 % of days yield doses exceeding MEDs of skin types I+II

Discussion

Possible Implications of Results

- our study and recent evidence from New Zealand^{9,10} suggest recommending sun protection on UVI 2 days for sensitive skin types
- adaptation of UVI guidance to different skin types should also be considered \rightarrow possible solution: preparation of a 'matrix' of health messages for different

skin types

- local authorities could choose entries most suitable for most sensitive major subgroup of local population
- necessity for local adaptation and possibility of including skin type and exposure duration into UVI guidance have been ascertained at WHO UVI workshop in Melbourne in 2015¹¹
 - not yet implemented
- future perspective: smartphone applications incorporating individual skin phototype combined with calendar and geotagging data and possibly UVI forecasting

⁹ Lucas RM et al. (2018) Are current guidelines for sun protection optimal for health? Exploring the evidence. *Photochem Phobiol Sci.* ¹⁰ McKenzie RL, Lucas RM (2018) Reassesing impacts of extended daily exposure to low level solar UV radiation. *Scientific Reports.* 8: 13805
¹¹ Gies P et al. (2018) Review of the Global Solar UV Index 2015 workshop report. *Health Phys.* 114: 84 – 90

Strengths and Limitations

Strengths	Limitations	
measurement data of 10 consecu-	ambient erythemal doses are a po-	
tive years from 9 measuring stations	tentially weak proxy for individual ex-	
of a solar UV monitoring network	posure	
	ightarrow clear sky, small solar elevation	
ightarrow in total, 14,431 daily UVI time se-	angle (fall & winter, majority of days	
ries from the 'low' UVI category	in our sample): surfaces facing the	
	sun can receive up to 40% higher	
	irradiances ¹²	
ightarrow well-established system of quality	ightarrow cloudy conditions (spring & sum-	
control	mer): UV on tilted surfaces reduced	
	by up to 50 % ¹²	
	ightarrow exposure ratio highly dependent	
	on individual behavior ¹³	

¹² McKenzie RL, Paulin KJ, Kotkamp M (1997) Erythemal UV irradiances at Lauder, New Zealand: relationship between horizontal and normal incidence. *Photochem Photobiol.* 66: 683 – 689

¹³ Vernez D et al. (2015) A general model to predict individual exposure to solar UV by using ambient irradiance data. J Expo Sci Environ Epidemiol 25 (1): 113 – 118

Conclusions

- WHO guidance for sun protection on days with 'low' UVI values needs reconsideration
 - UV exposure for prolonged exposure durations on UVI 2 days and, under certain rare circumstances, even on UVI 1 days, reaches erythemal levels
 - particularly relates to sensitive skin types
 - need for skin type specific public health messages relating to the UVI might be implied