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Abstract: The paper analyzes the influence of different magnetic resonance (MR) scan sequence 

parameters (echo time, repetition time, orientation of scan slices, sequence type, mass of a tested 

object) on the energy of the produced noise and vibration. The measured sound pressure levels, 

together with the recorded noise and vibration signals, were stored in a database and then processed 

using similar methods to speech signal analysis because the main frequencies of the acoustic noise 

and vibration lie in the standard audio frequency range. In the signal processing phase, four types 

of parameters describing the signal energy were determined and statistically analyzed, and the 

obtained results were visually and numerically compared. 
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1. Introduction 

The magnetic resonance imaging (MRI) tomograph is a huge intelligent sensor used for non-

invasive scanning of various parts of a human body [1] without being a burden to it, as in the case of 

X-ray equipment. The MRI method is successfully used for health monitoring of therapy progress 

after vocal fold cancer surgery, monitoring of implanted cartilage in legs or arms, monitoring the 

process of renovation/degradation of the Achilles tendon, etc. In the case of the open-air MRI device, 

a weak magnetic field (up to 0.2 Tesla) is usually generated by a pair of permanent magnets [2]. Slices 

of a tested object are selected in 3-dimensional (3-D) coordinates by a gradient system consisting of 

planar coils parallel to the magnets. A radio frequency (RF) receiving/transmitting coil with a tested 

object/subject is placed between them. A rapidly changing current flowing through the gradient coils 

produces significant mechanical vibration, thus causing image blurring of thin layer samples and an 

acoustic noise that significantly degrades the simultaneously recorded speech signal during MR 

scanning of the human vocal tract [3]. The acoustic noise has always had negative physiological and 

psychical effects on the exposed person, depending on the noise intensity and time duration of noise 

exposure. In order to minimize these negative factors, this work is focused on the mapping of the 

energy relationship between vibration and noise signals measured in the MRI scanning area and its 

vicinity, with the final aim to choose the proper scan sequence and its parameters—repetition time 

(TR), echo time (TE), orientation of scan slices, etc. Apart from the real-time recording of the vibration 

and noise signals, the sound pressure level (SPL) was measured by a sound level meter using 

frequency weighting to match human perception of the noise. The measured data and recorded 
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signals were further processed off-line—the determined energetic features were statistically 

analyzed, and the results were compared visually and numerically. 

2. Subject and Methods 

As mentioned above, the primary use of the open-air MRI device is in medical diagnostics, so 

designation of three planes formed by x, y, and z axes follows medical terminology used for human 

body planes [4]. The plane dividing the body vertically into ventral (anterior) and dorsal (posterior) 

parts is called a coronal (frontal) plane. The second vertical plane dividing the body to left and right 

sides is a sagittal plane. The horizontal plane that divides the human body into superior (upper) and 

inferior (lower) parts is called a transverse (cross-sectional) plane. Different orientation of scans 

during execution of the scan sequence needs activation of different gradient coils having impact on 

their vibration and consequent acoustic noise. Two basic types of sequences called spin echo (SE) and 

gradient echo (GE) arising from MRI physical principles [5] are preferred in this MRI device type. In 

the experimental practice, it is often necessary to change the basic parameter setting of the used scan 

sequence as well as other scan parameters—field of view, number of slices, slice thickness, etc.—

depending on the currently tested sample. The volume size of the tested object/subject is another 

important factor that has an influence on the intensity of the produced vibration and noise in the 

scanning area of the MRI device. A tested person/sample/phantom as a part of the whole vibrating 

mechanical system changes the overall mass, stiffness, and damping by loading the lower gradient 

coil structure in the patient’s bed. 

To preserve maximum quality of MR images without any artefacts, the vibration sensors placed 

in the static magnetic field of the MRI scanner cannot contain any part made from a ferromagnetic 

material. For this reason, the measuring microphone and the sound meter must be located outside of 

the static magnetic field influence at an adequate distance from the noise source. The recording 

microphone must have high sensitivity and an appropriate directional pattern for suppression of 

additional background noises. The C-weighting filter was used in the sound pressure level (SPL) 

measurement to be more consistent with human hearing of loud sounds. The filter frequency 

response in s-domain is given by the equation 
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where ω = 2πf, f1 = 20.6 Hz, f2 = 12194 Hz, and 20 log G = 0.062 dB. Using the bilinear transform with 

frequency warping, the transfer function of the filter can be transformed to the z-domain for digital 

infinite impulse response (IIR) weighting filter design [6]. 

Several methods can be used to determine the energy of the periodical signal. For our purpose, 

two of the basic principles are applied: 

a. Taking a signal x(n) in a defined region of interest (ROI) with the length of M samples, the 

standard root mean square (RMS) is computed or the energy is calculated as the absolute value 

of the mean of the Teager–Kaiser energy operator [7] 
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b. Processing the signal x(n) in frames, using NFFT-point fast Fourier transform (FFT) to compute 

the magnitude of its power spectrum |S(k)|2, and estimating the frame energy by the first 

cepstral coefficient c0 or using the autocorrelation coefficient r0 as 
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3. Experiments and Results 

The performed experiments were focused on the analysis of vibration and noise conditions in 

the scanning area and in the neighborhood of the open-air MRI equipment E-scan Opera by Esaote 

S.p.A., Genoa, Italy [2]. Practical measurement comprised real-time recording of the output voltage 

signals of the piezoelectric sensor located inside the scanning area of the investigated MRI device and 

of the microphone in its close neighborhood, as well as SPL noise measurement. The stored records 

were next processed for evaluation and comparison of the signal properties. Basic measurement of 

the acoustic noise SPL distribution in the MRI device vicinity was carried out using the multi-function 

environment meter Lafayette DT 8820 placed at the distance DX = 60 cm from the central point of the 

scanning area at a height of 75 cm from the floor (level of the bottom gradient coils) and at 30 degrees 

from the left corner near the temperature stabilizer. First, SPL noise was mapped in detail at distances 

DX = <45~90> cm. In all cases, the phantom was a plastic sphere of 140 mm diameter filled with doped 

water [2] and placed inside the knee RF coil; see the arrangement photo in Figure 1a. The SB-1 sensor 

[8,9] was used for picking up the vibration signals from the solid surface inside the scanning area of 

the MRI Opera device. Position P0 of the sensing disc on the surface of the plastic holder of the bottom 

gradient coils can also be seen in Figure 1a. At the same time, the acoustic noise signal was recorded 

by the 1” Behringer dual diaphragm condenser microphone B-2 PRO, which was placed on a stand 

with shock mounting beside the sound level meter. Noise and vibration signals were recorded with 

the help of the Behringer Podcast Studio equipment. The signals of duration of about 15 s sampled at 

32 kHz were next processed in the sound editor program Sound Forge 9.0a. 

In our main measurement experiments, the effect of MR scan parameters on the recorded noise 

and vibration was analyzed: Used scan sequences are found in Table 1, along with the orientation of 

scan slices TORIENT = {Coronal, Sagittal, Transversal}, times TTE = {18, 22, 26} ms, and TTR = {60, 100, 200, 

300, 400, 500} ms. Finally, the influence of the mass of the object inserted in the MRI device scanning 

area was evaluated. Practical realization of this task consisted of placing the testing phantom or a 

head and a neck of a lying person in the RF scan coil between the upper and lower gradient coils of 

the MRI device. The total weight of the testing phantom was 0.75 kg. Test persons lying on the patient 

bed of the MRI device (see the photo in Figure 1b) were one male and one female weighing 

approximately 75 and 55 kg. The baseline measurement and recording of the vibration and noise 

signals were carried out during the execution of MR scan sequences typical for 3-D imaging of the 

human vocal tract. The TE and TR parameters were set manually according to Table 1 to perform 

measurement and comparison in the range enabled by the current sequence. 

  
(a) (b) 

Figure 1. Arrangement photo of sound pressure level (SPL) noise measurement and parallel recoding 

of noise and vibration signals of the open-air magnetic resonance imaging (MRI) device Opera: (a) 

using the testing phantom, (b) with the lying person. 
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Table 1. Basic description and scan parameters settings of used MR sequences. 

Type Name of Sequence TE (ms) TR (ms) FOV Matrix Size 

Hi-Res SE 18 HF 18 500 250 × 250 × 200 256 × 256 

Hi-Res SE 26 HF 26 500 250 × 250 × 200 256 × 256 

Hi-Res GE T2 22 60 250 × 250 × 200 256 × 256 

3-D SS 3D balanced 5 10 200 × 200 × 192 200 × 200 

3-D 3D-CE 30 40 150 × 150 × 192 192 × 192 

4. Results and Discussion 

Results of detailed measurements of the acoustic noise intensity at different distances from the 

central point of the scanning area for SE and GE high-resolution (Hi-Res) sequences are presented in 

Figure 2. The minimum DX = 45 cm was set to eliminate interaction of metal parts of the SPL meter 

with the static magnetic field of the MRI device. If the SPL meter is placed near the center, the field 

homogeneity starts to be disrupted, a warning message is displayed on the MRI control console, and 

scanning is prohibited by the control software until the fault is fixed – it is an automatic protection of 

the system against the MRI device damage [2]. The maximum distance DX = 90 cm was chosen with 

respect to the fact that measured levels at this position are close to the background noise SPL0 

originated from the temperature stabilizer. Therefore, the working distance of 60 cm was used for all 

further measurements. 

The first investigation was aimed at the influence of the choice of slice orientation on the energy 

of the produced vibration as well as noise signals. This effect is large—the maximum can be found in 

the sagittal plane and the minimum in the transversal plane—see the graphs in Figure 3. Therefore, 

the remaining experiments used only the sagittal orientation. In correspondence with our previous 

research [8,9], the current experiments confirm influence of TR and TE times on the vibration and 

acoustic noise properties. The TR parameter determines the fundamental frequency FV0, and the TE 

time stretching causes a fall of the final signal energy, but higher frequencies are affected, as 

documented by a comparison of the first two dominant frequencies FV1,2 in Figure 4. However, as 

seen in Figure 5 the influence of the TR on the signal energy is not negligible, especially for TR = 400 

and 500 ms. Next, a comparison of energetic relations of vibration and noise signals for different 

sequence types shows small differences; only the 3-D SE sequence produced the noise with minimal 

intensity, as documented by the graphs in Figure 6. As seen in Table 2, the obtained vibration signal 

energy was higher for the water phantom than for the lying person—in the latter case, the effective 

weight of the person pressing on the bottom plastic holder of the gradient coils attenuated the 

vibration pulses partially. On the other hand, the energy of the secondarily produced acoustic noise 

was roughly inversely proportional to the volume of the testing object/subject. It is caused by 

superposition, with the noise originating from the upper gradient coils that are not affected by the 

weight of the testing object/subject. 

 
(a) (b) 

Figure 2. Mapping of acoustic noise SPL at different distance DX = {45, 50, 55, 60, 70, 80, and 90} cm 

from the middle of scanning area of the MRI device for spin echo (SE)/gradient echo (GE) sequences: 

(a) SPL values together with the background ones (SPL0), (b) box-plot of their basic statistical 

parameters. 
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(a) (b) (c) 

Figure 3. Visualization of vibration signal features for different slice orientations: {Coronal, Sagittal, 

Transversal}; (a) bar-graph of signal root mean square (RMS) values; (b) histograms of Enc0; (c) mutual 

Fv1/Fv2 positions for high-resolution SE scan sequences with TE = 18 ms and TR = 500 ms. 

 
(a) (b) (c) (d) (e) 

Figure 4. Visualization of vibration signal features for different TE time: {18, 22, 26} ms; (a) bar-graphs 

of signal RMS values and basic statistical parameters: (b) EnTK; (c) Enc0; (d) Enr0; (e) mean mutual 

Fv1/Fv2 positions for high-resolution SE-HF sequences (TR = 500 ms, sagittal orientation). 

 
(a) (b) (c) (d) 

Figure 5. Visualization of energetic relations of vibration and noise signals for different TR times; {60, 

100, 200, 300, 400, 500} ms; (a) signal RMS together with noise SPL values; (b) mean Enc0; (c) mean 

Enr0; (d) mean EnTK; used high-resolution GE-T2 sequences with TE = 22 ms, and sagittal orientation. 

 
(a) (b) (c) 

Figure 6. Comparison of energetic relations of vibration and noise signals for different sequence types 

- high-resolution {SE-HE, SE-HF, GE-T2} and 3-D {SS-3Dbal, 3D-CE}; (a) signal RMS together with 

SPL values; (b) bar-graphs of basic statistical parameters of Enc0 values; (c) corresponding histograms 

for Enc0 parameter. In all cases a sagittal slice orientation was used. 
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Table 2. Comparison of mean energy values of vibration and noise signals for different objects placed 

in the scanning area of the MRI device. 

Subject Type 1 
Vibrations (SB-1) Noise (B2-Pro) 

RMS EnTK Enc0 Enr0 RMS EnTK Enc0 Enr0 

Water phantom 34.6 4.69 0.0380 24.0 20.1 4.05 0.0255 8.5 

Male 26.8 4.96 0.0404 14.4 25.5 4.51 0.0328 15.9 

Female 28.7 4.93 0.0402 16.6 23.2 4.19 0.0286 10.6 
1 Used high-resolution SE-HF scan sequences with TE = 18 ms, TR = 400 ms, and sagittal orientation. 

5. Conclusions 

Following the presented measurements of the acoustic noise SPL in the vicinity of the 

investigated open-air MRI device, a maximum sound pressure level of about 78 dB(C) was achieved 

at a distance of 45 cm from the central point of the MRI scanning area for the GE scan sequence with 

short TE and TR times and sagittal slices orientation. This means that no special hearing protection 

aids (ear plugs or ear muffs) are necessary. For examination of other parts of the human body (leg, 

arm, etc.), the head is not inserted directly between upper and lower gradient coils, so the noise is 

much lower—as documented for different distances in Figure 2. Finally, the scanning times for the 3-

D and Hi-res sequences are in general less than 15 min (typically about 3–5 min, depending on the 

chosen number and thickness of the slices)—exposition of the human organism and its ear by the 

noise and vibration is not great. 

The results of the performed measurements are useful for precise description of the process of 

mechanical vibration excitation and the acoustic noise radiation in the scanning area and vicinity of 

the MRI device. The measurement results and comparisons taken from a similar low field MRI 

tomograph can be useful for optimization of acoustic noise suppression in parallel with speech 

recording applied to 3-D modeling of the human vocal tract [3]. 
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