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Abstract: Inertial navigation systems (INSs) requires an initial attitude prior to its operation. To that 

end, the coarse alignment process is applied using inertial sensors readings. For low-cost inertial 

sensors, only the accelerometers readings are processed to yield the initial roll and pitch angles. The 

accuracy of the coarse alignment procedure is vitally important for the navigation solution accuracy 

due to the navigation solution drift accumulating over time. In this paper, we propose using 

machine learning (ML) approaches, instead of traditional approaches, to conduct the coarse 

alignment procedure. To that end, a new methodology for the alignment process is proposed, based 

on state-of-the-art ML algorithms such as random forest (RF) and more advanced boosting method 

of gradient tree XGBoost. Results from a simulated alignment of stationary INS scenarios are 

presented accompanied by a feasibility study. ML results are compared with the traditional coarse 

alignment methods in terms of time to convergence and accuracy performance. When using the 

proposed approach, with the examined scenarios, results show a significant improvement of the 

accuracy and time required for the alignment process. 
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1. Introduction 

An inertial navigation system (INS) is a dead reckoning(DR) navigation system that integrates 

the inertial sensors outputs to give the current position, velocity, and attitude of a platform without 

any external aids [1,2]. As required from a DR system, it must have the state initial conditions before 

initiating the navigation solution. INS inertial sensors contain accelerometer triad (three mutually 

orthogonal accelerometers) that measures the specific force vector, and gyroscope triad aligned with 

the accelerometers that measure the angular rate vector [2]. Present INS systems are commonly based 

on micro-electro-mechanical-system (MEMS) technology that applies small and cheap sensors but 

with relatively high errors that can dramatically affect the overall navigation solution performance 

[3-5]  

The initialization of the position and velocity vectors is made using external information (such 

as from global navigation satellite systems). The initial attitude however can be determined using 

inertial sensors [5–7]. This process starts with an essential step of coarse alignment (CA) whose 

purpose is to calculate the initial attitude angles – roll and pitch from the accelerometers readings 

and yaw from the gyroscopes readings. For low-cost inertial sensors only, the roll and pitch can be 

determined from the accelerometers [2,8]. When completing the CA procedure, fine alignment (FA) 

is applied to improve the CA results. To that end, FA uses external sensors or information, such as 

zero velocity updates, in a fusion process to improve the accuracy [2,6]. Recently, an analytic 

evaluation of the steady-state properties of the FA process was derived [9].      
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In this paper, we address CA problem for low cost sensors. We aim to demonstrate the ability to 

predict the initial roll and pitch angles, using computational learning algorithms, given its inertial 

sensors readings and a priori database containing the system behavior from other previously 

recorded alignment scenarios. In the prediction solution, we show improvement of the accuracy and 

time required for the alignment process, which makes it possible using learning algorithms to replace 

the classical coarse alignment with a computational learning alignment method. The development of 

this new ability to perform the process of aligning the INS quickly and accurately by smart integration 

of machine learning (ML) algorithms can constitute a breakthrough in autonomous vehicle 

navigation in an environment that does not allow the significant use of additional means of updating 

the navigation system. 

2. Traditional Coarse Alignment 

The traditional CA process of an inertial navigation system is illustrated in Figure 1. It consists 

of two main steps: the first step is some pre-processing of the input sensors readings whose purpose 

is to reduce the random noise effects. Next, the initial values of the roll and pitch attitudes are 

calculated using an analytical transformation of the values to the current attitude of the system [1]. 
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Figure 1. Traditional inertial navigation system CA process. 

Once we reduced the influence of the random noise effects correctly, the performance of the IMU 

sensors limits the accuracy of the initial attitude [6]. The method to deal with these noise effects is to 

take the accelerometer measurements over time and average them. This method is significantly time-

consuming and directly affects the overall performance of the alignment process. 

The analytical calculation is based on the following coordinate transformation matrix, in terms 

of the pitch θ and roll ϕ Euler angles of the INS [2]: 
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where g is the gravity magnitude and f is the specific force vector expressed in the INS body 

frame given by: 
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 The pitch and roll may be determined analytically by using the following equations of the 

reverse transformation [2]: 
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2( , )y zarctg f f     (4) 

In practice, the values of the force vector f  in Eq. (3)-(4) are calculated by taking the mean 

values of the accelerometer measurements for a given time period.     

3. Machine Learning Methodology 

3.1. Overall approach 

The basic idea is to replace the traditional process with a new one based on a pre-learned CA 

predictive ML model, as being illustrated in Figure 2. The new process will predict the initial attitude 

state given IMU sensors readings of a relatively short period. The CA task is treated as a supervised, 

regression machine learning problem. We have both the features – the data of the accelerometer 

measurements, and the target labels – continuous values of true pitch and roll that we want to predict. 
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Figure 2. Proposed CA process. 

The idea is to train and evaluate the performance of multiple machine learning models in terms 

of both prediction speed and accuracy on a pre-recorded large time series dataset of accelerometers 

readings and the matching true-attitudes. For the feasibility study, the data was obtained from 

simulations of the inertial sensors in a stationary system, having a velocity random walk error. Then, 

we evaluated the results in terms of absolute errors prediction, and our goal was to show that the 

new process can perform better than the traditional method. Having better (or same) accuracy within 

a shorter time, or overall better accuracy in similar time (or even longer one) will constitute 

interesting, Innovative result. 

Figure 3 illustrates the process in which our predictive model was trained. First, we generated 

and stored time-series data for each running scenario. The input data consists the raw accelerometers 

readings values 1 nX {x ,...,x }t   of three accelerometer axes {a ,a ,a }x y z and the matching target 

labels of true pitch and true roll 1 nY {y ,...,y }t  . Given the time-series data, it is critical to identify 

some strong features for the success of the trained model in the prediction task. In order to calculate 

features from the raw data, the next step was to do some pre-processing work on the given time 

series, in which we used sliding window method to split the whole data set into segments. Each data 

segment has a fixed width of w samples.  Then, for each data segment, numerical features extraction 

(FE) was applied for usage in the final stage of the modeling process.  

http://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html
http://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html
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Figure 3. CA predictive model training process. 

The selection of the segment width w has a high significance, as it determines the actual amount 

of accelerometer raw data that needed to accumulate before we can predict the roll and pitch. Using 

a smaller width means a faster alignment process, which requires less time to converge, but can 

influence the accuracy performance. To determine the optimal duration value, we tested a range of 

segment widths for each of the ML methods and compared the results with the traditional alignment 

method.  

We define the inertial sensors error model to express the influence of the random noise (white 

noise) component while analyzing the CA performance [8]. The specific force vector sensed by the 

accelerometers has the following form [2]:  

wimu true a af f b    (5) 

Where truef  is the real true value of the specific force, ab  is the accelerometers biases, and wa  

is the inertial sensors random noise.  

3.2. Features description 

Our dataset includes a total of 16 known continuous numerical features that were computed on 

the signals of the accelerometer's axes, within each time segment. The features can be general 

categories as follows:   

1. Basic statistical features: Mean, Standard deviation, Variance, Minimum value, Absolute of the 

minimum value, Maximum value, Absolute of the maximum value. 

2. Advanced statistical features:  

 Entropy: the amount of regularity and the unpredictability. 

 Skewness: the asymmetry of the probability distribution. 

 Kurtosis: the "tailedness" of the probability distribution. 

 Energy: the sum of squares of values. 

 Amplitude: the difference between the minimum and the maximum value. 

3. Time-Domain Features:  

 Number of peaks: the number of peaks with defined minimum peak height and the 

minimum distance between peaks. 

 Mean spectral energy: the mean spectral energy computation using one-dimensional discrete 

Fourier Transform.  

 Mean crossing rate: the number of mean crossings. 

 Zero-crossing rate: the number of sign changes. 

https://en.wikipedia.org/wiki/Unpredictability
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
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4. Results and Discussion 

Accelerometers readings of a low to mid accuracy with a velocity random walk (VRW) error [10] 

of 0.03 to 0.05 / /m s h , respectively, in stationary conditions were simulated for the feasibility 

study. The other accelerometer error terms, such as bias, where not addressed in the feasibility study. 

The simulated raw data generated for selected sets of true pitch and true roll angles of the 

accelerometers.  Two representative sets differing by their resolution were chosen for the analysis: 

First, within a small range of angles -1° ≤ roll, pitch ≤ 1° with a relatively high resolution of 0.01 

degrees and then a wider range of -180 < roll < 180 and -90 < pitch < 90 in smaller resolution. The 

motivation for this strategy was to deal with the huge amount of information collected from the 

simulative accelerometers which are operating in 50Hz, and still try to examine the ability of machine 

learning based CA both in a wide angles range and also to distinguish between in high resolution of 

accuracy. 

For the performance comparison between the traditional CA to the ML CA, the mean absolute 

error (MAE) measure was employed to evaluate the alignment precision and convergence time. The 

initial ML CA was RF[11] and then the gradient tree XGBoost [12], a more advanced boosting method, 

was examined. 

Result show that in the challenging case of low accuracy IMU with a high-resolution test set, 

while using the traditional CA method the convergences to MAE of about 0.005 (+/- 0.029) degrees, 

after about 2 seconds, and maintains this value even after few more seconds. Figure 4. Shows, for 

example, the actual results of all the test set runs roll errors spread, with the mean value and STD 

marked on top, in black and blue lines respectively. Figure 5. shows the mean and STD of those results 

separately. 
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Figure 4. Attitude errors of the traditional coarse alignment. 
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Figure 5. Mean and STD errors of the traditional coarse alignment. 

Table 1 present the results comparison for the same scenario of low accuracy IMU with a high-

resolution test set, between classical CA and ML based CA. The best configuration of each of the 

methods, including the convergence time and the precision in terms MAE. Both ML methods 

performed better relative to classical CA and the best setup was one with RF obtaining an MAE of 

0.0039 (+/- 0.0031) after one second. That is an accuracy improvement both in the mean and STD error 

values of 0.0011 and 0.0259 degrees respectively. After RF, The XGBoost also showed good accuracy 

improvement over the classical CA of 0.009 and 0.0257 degrees for the mean and STD error values 

respectively. Both the ML methods convergence to those results after only 1 second, that is half the 

convergence time of the classic process. That is, performance was improved both in time to 

convergence and accuracy of the CA process. 

Table 1. Roll attitude errors statistical analysis. 

 Classical method RF XGBoost 
Convergence time  2 secs 1 sec 1 sec 

MAE (sec) 0.005 (+/- 0.029) 0.0039 (+/- 0.0031) 0.0041 (+/- 0.0033) 

5. Conclusions 

The goal of this work was to show the feasibility of implementing machine learning based coarse 

alignment process instead of the traditional approaches, with an added value of improvement in 

accuracy and/or time required for the alignment process. The results show a significant improvement 

in these parameters in a simulative environment. This improvement is an important breakthrough in 

the area of coarse alignment of inertial navigation and in particular in autonomous vehicle 

navigation. In future work we aim to continue and expand the research on the proposed approach in 

several main aspects including implementation of neural networks and conducting field experiments 

to validate the proposed approach. 
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