

Article A Bio-Inspired Algorithm for Autonomous Task Coordination of Multiple Mobile Robots

Abhijeet Ravankar^{1,†,*}, Ankit A. Ravankar^{2,†}, Yukinori Kobayashi², Yohei Hoshino¹

- ¹ School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Hokkaido, 090-8507, Japan; aravankar@mail.kitami-it.ac.jp (A.R.); hoshinoy@mail.kitami-it.ac.jp (Y.H.)
- ² Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan; ankit@eng.hokudai.ac.jp (A.A.R.); kobay@eng.hokudai.ac.jp (Y.K.)
- * Correspondence: aravankar@mail.kitami-it.ac.jp
- + These authors contributed equally to this work.

Version November 16, 2018 submitted to Proceedings

- Abstract: Efficient task coordination is an important problem in multi-robot systems. Explicit
- ² programming of each robot to perform specific tasks (ex. cleaning) is too cumbersome and inefficient
- as the areas to serve in a map may vary with time. Moreover, the number of the robots available to
- ⁴ serve may also vary, as some of the robots may be charging and not available. Improper task division
- 5 can cause two or more robots to serve same areas of the map, which is a waste of computation and
- ⁶ resources. Hence, there is a need for a simpler scheme for autonomous task coordination of multiple
- robots without the need of explicit programming. This paper presents a bio-inspired algorithm, which
- ⁸ uses the attractive and repelling behavior of pheromones for autonomous task coordination. The
- 9 proposed algorithm uses a node representation of the navigational paths for autonomous exploration.
- ¹⁰ This repelling mechanism also allows the robots to capture areas or sub-areas of the map so that
- there is efficient task coordination, and robots work without interruption from other robots. We show through experiments that the proposed scheme enables multiple service robots to perform
- show through experiments that the proposed scheme enables multiple service robots to perform
- cooperative tasks intelligently without any explicit programming or commands.

Keywords: Multi-robot system; robot task coordination; bio-inspired algorithm, robots in sensor
 networks

16 1. Introduction

Mobile robots are being increasingly used to automate tasks like floor cleaning, and surveillance 17 in shopping malls, hospitals, and universities. To cover large areas, multiple robots are often used 18 [1,2]. Multiple robots can also work in parallel. However, multiple robots needs to be programmed 19 to efficiently serve different areas of the region. For example, in case of floor cleaning multi-robot 20 system in hospitals or other public places, each robot must explicitly be programmed to serve specific 21 areas. This can be done in real-time through various commands, or the time and places to serve can 22 be decided previously. Some amount of flexibility can also be introduced in the system in selecting 23 the areas and robots. However, in real world situations, the service areas in the map may vary with 24 time. Moreover, the number of available service robots may also vary, as some of the robots may 25 be unavailable for maintenance, or charging. It is difficult to explicitly instruct or program robots 26 to serve different areas of the map again and again to cope with these dynamic changes. Hence, an 27 autonomous task coordination is necessary in which the robot automatically disperse themselves to 28 serve the available areas efficiently. In the absence of such autonomous coordination, multiple robots 29

³⁰ may end up serving the same areas which is inefficient.

This paper presents a bio-inspired algorithm, which uses the attractive and repelling behavior of pheromones for autonomous task coordination. The proposed algorithm uses a node representation of the navigational paths for autonomous dispersion of the robots to different service areas. This repelling mechanism also allows the robots to capture areas or sub-areas of the map so that there is efficient task coordination, and robots work without interruption from other robots.

The proposed work is inspired by biology. 'Pheromones' [3] are biochemicals which are deposited by insects to signal other insects of the same species to either attract or repel from a particular resource. The biochemicals which attract other insects as called as 'pheromones'. This signalling mechanism is found in honeybees, ants, wasps, and termites [4]. Ants uses pheromones to attract the population to food source, and bees to attract the population to an empty hive [5]. On the other hand, biochemicals which induce repelling behavior (i.e. they turn away other insects from a resource) are called 'Anti-aphrodisiac pheromones' or simply 'Anti-pheromones'.

⁴³ A review of research in pheromone signalling can be found in [6]. Previous related works have ⁴⁴ mainly focussed on the swarm behaviour using attractive pheromone mechanism [7] for process

45 control [8], communication [9], and swarm behaviour [10]. A multi-agent exploration algorithm has

⁴⁶ been proposed in [11] in which a coverage algorithm has been proposed with pheromone barriers.

⁴⁷ Similar dispersive behaviours which employs repellent virtual pheromones has been proposed in

⁴⁸ [12] to survey a disaster site. Repelling behavior of pheromones has been used in multi-robot rescue

⁴⁹ mission [13], autonomous multi-robot exploration [14,15], and robot surveillance [16].

50 2. Proposed Bio-Inspired Algorithm

Signal	Value	Force
Pheromone	+ve number	Attractive
Anti-Pheromone	-ve number	Repulsive
None	zero	None

Table 1. Pheromone Type and Behavior.

This work assumes that the robots can communicate with each other directly or through a 51 central computer [17]. The proposed bio-inspired algorithm uses both of the attractive mechanism of 52 pheromones and repelling behavior of the anti-pheromones. In order to realize the mechanism, it is 53 required that the map of the environment is made. This can easily be done using any of the SLAM 54 (Simultaneous Localization and Mapping) algorithms [18]. The map generally marks the obstacles 55 and the empty spaces. Generally, the empty spaces are the passages and areas to serve in the map. 56 The following sections describe the node representation of the navigational paths, and area capture 57 mechanism for autonomous multi-robot collaboration. 58

⁵⁹ 2.1. Node Representation of Path

Tasks like cleaning and surveillance requires that multiple robots disperse themselves in the 60 region to cover maximum possible area. A node representation is proposed for this purpose. A node 61 is defined as the point of turn in the passages of the map. Figure 1 shows an example of a node 62 which is a representation of a cross-way point with four directions. Each node has vertices in different 63 directions on which anti-pheromones can be deposited. Each robot is programmed to deposit a unit of 64 anti-pheromone in the direction where a robot takes turn. Figure 1(a) shows a situation where there 65 are three anti-pheromones in north direction, two anti-pheromones in west, and one anti-pheromone 66 in the east direction. A node map can be generated from the grid-map by removing noise using erode 67 and dilate techniques [19] and then generating skeleton paths upon it. 68 In order to realize the deposition of pheromones and anti-pheromones in the map, an array is 69

⁷⁰ maintained for the nodes, and robots can change the array values. For pheromone deposition, positive

(a) A Node Example.

(b) Map with Service Areas.

Figure 1. Node representation. (a) Robot turns in direction (East) of minimum anti-pheromones. Pheromones are indicated by \blacktriangle . (b) Service areas from A to H, and nodes from n₁ to n₁₃ shown in red.

Figure 2. End nodes not in service region are initialized with $-\infty$, nodes in service areas with $+\infty$, and others with zero.

- values are deposited which have attractive force and attracts other robots towards that node location.
- ⁷² On the other hand, negative values are deposited for the anti-pheromone and other robots move away
- ⁷³ from that node location. The larger the pheromone value, stronger is the barrier for other robots. Table
- ⁷⁴ 1 summarizes the pheromone type behavior.
- ⁷⁵ Whenever a robot encounters a node (or a point of turn in the map), it selects a direction where
- there is a minimum amount of anti-pheromones. In Fig.1(a), a robot approaching the node 'n' from
- ⁷⁷ south direction takes a turn towards the right as it has the minimum number of anti-pheromones
- ⁷⁸ compared to other directions. After executing the turn, the robot will deposit one more anti-pheromone
- ⁷⁹ on the right of node 'n'.
- Figure 1(b) shows a map with service areas marked A to H. It is assumed that all the robots are initially docked at area E, hence there are seven service areas. The various nodes n_1, n_2, \dots, n_{13} are the
- ⁸² nodes. Nodes n_3 , n_6 , n_9 , n_{12} , n_7 , n_{10} , and n_{13} are special nodes as they are in the service area and not in
- $_{83}$ passages. Nodes n_1 , and n_{11} are the terminal nodes. The algorithm for node initialization is given in

Algorithm 1: Pseudocode for Node Initialization							
Data: nodes : $\{n_1, n_2, \dots, n_{last}\}$							
1 for each n _i in nodes do							
2	2 for each dir <i>in</i> n _i do						
3	neighbors \leftarrow get_neighbors(n _i)	Get total neighbors of node					
4	if neighbors > 1 then						
5	$\operatorname{dir} \leftarrow 0$	Initialize passage nodes to 0					
6	else						
7	if $n_i \in \text{service}$ area then						
8	$\operatorname{dir} \leftarrow +\infty$	Initialize service-area nodes to +infinity					
9	else						
10	dir $\leftarrow -\infty$	Initialize terminal nodes to -infinity					

Algorithm 1. In the beginning, all the node directions are initialized to zero. Special nodes which are in service areas are initialized with $+\infty$, wheres terminal nodes are initialized with $-\infty$. Hence, the initial configuration of pheromone values at the various nodes is as shown in Fig.2.

As mentioned earlier, it is assumed that all the robots are initially docked at area E, which 87 also marks the starting point of the robots. For the sake of simplicity, it is also assumed that the 88 number of service robots are same as the number of service areas. The actual movement of robots is 89 governed by two factors: (1) Attractive and repelling behavior or pheromones, and (2) shortest path 90 priority. The robots keep depositing anti-pheromones over the nodes in the direction of traversal. The 91 autonomous dispersion of robots towards different service areas is governed by the repelling behavior 92 of anti-pheromones as shown in Fig.1(a). This autonomous dispersion does not require any explicit 93 programming or commands. Moreover, it is neither affected by the availability or non-availability of 94 the service areas, nor by the number of available robots. 95

96 2.2. Area Capture

In order to improve the efficiency, an 'area capture' mechanism is proposed. The first robot to 97 come across special node in a service area deposits a very high (i.e. $-\infty$) anti-pheromones. This high 98 value of anti-pheromones repels other robots from that service area. In other words, the robot 'captures' 99 that particular area for uninterrupted work. Robots are automatically guided towards empty service 100 areas which have not yet been captured, as the pheromone values at those particular nodes is still $+\infty$ 101 with attractive behavior. This mechanism too, does not require any explicit programming or command. 102 Once all the service areas have been served, a notification sends all the robots to the docking station to 103 charge. 104

3. Simulation Results

Figure 3. Node configuration at different steps of simulation. Pheromones are indicated by A.

The simulation software was designed in Python for the map in Fig.1(b) with seven robots represented as R_1, \dots, R_7 , all of which are docked at location E (location E was not set as the service area). A-star [20] algorithm was chosen for path planning. The cost of movement was set to 1 unit for

Step	Area-A	Area-B	Area-C	Area-D	Area-F	Area-G	Area-H
Step-0	0	0	0	0	0	0	0
Step-1	1 (R ₁)	0	0	0	0	0	0
Step-2	1 (R ₁)	1 (R ₂)	0	0	0	0	0
Step-3	1 (R ₁)	1 (R ₂)	0	0	1 (R ₃)	0	0
Step-4	1 (R ₁)	1 (R ₂)	1 (R ₄)	0	1 (R ₃)	0	0
Step-5	1 (R ₁)	1 (R ₂)	$1(R_4)$	0	1 (R ₃)	1 (R ₅)	0
Step-6	1 (R ₁)	1 (R ₂)	1 (R ₄)	1 (R ₆)	1 (R ₃)	1 (R ₅)	0
Step-7	1 (R ₁)	1 (R ₂)	1 (R ₄)	1 (R ₆)	1 (R ₃)	1 (R ₅)	1 (R ₇)

Table 2. Area Capture (1: Captured, 0: Not Captured). Refer Fig.1(b) for areas.

forward, backwards, up, and down movements. The cost for diagonal movement was set to $\sqrt{2}$ units. 109 As shown in Fig.3(a) Robot R_1 moves towards service region A as it is the nearest service area (shortest 110 path rule) depositing a single unit of anti-pheromone on the north direction of node n_2 . Since the node 111 n_3 is a special node, upon encountering it, robot R_1 deposits $-\infty$ capturing the area and working on it. 112 In the next step, R_2 starts navigation. As shown in Fig.3(b), node n_2 has $-\infty$ anti-pheromones 113 in the north and west directions, and zero anti-pheromones in the east direction. R_2 moves in the 114 direction of minimum anti-pheromone deposition, and hence moves towards the right depositing a 115 unit anti-pheromone on the right of node n_2 . Pheromones are indicated by \blacktriangle . Upon encountering 116 node n_5 which has no pheromone deposition, R_2 is pulled towards service areas B and F with $+\infty$ 117 pheromones. Since the node n_5 has no pheromone deposition, the selection of movement towards 118 area B or F is governed by the shortest distance. If the distance is the same, any area can be selected 119 randomly. The final configuration is shown in Fig.3(b) where R_2 captures region B by depositing $-\infty$. 120 Similarly, other robots automatically disperse in the map and capture different service areas. 121 As an example, Fig.3(c) shows the sixth step of the simulation. Robot R_6 is automatically pushed 122 towards regions D and H through repelling behavior of anti-pheromones. Notice that, since each of the 123 robots deposits a unit anti-pheromone at each encountered node, the total anti-pheromone deposition 124 accumulated at the right of nodes n_2 , n_5 , and n_8 change. Upon encountering node n_{11} , the robot is 125 pulled towards region D which has positive pheromones. Similarly, Fig.3(d) shows robot R₇ moving 126 towards service area H. Finally, all the areas are captured by the autonomous dispersion of robots and 127 area-capture mechanism. Table 2 shows the specific areas captured by different robots in various steps 128 of simulation. In Table 2, the value 1 denotes area-captured, while value 0 denotes that the area is still 129 available to be served. 130

131 4. Conclusions

Inspired by the attractive and repelling behavior of pheromones, this paper presented a simple 132 mechanism to automatically disperse multiple robots in the service areas. A node representation was 133 formulated to realize the pheromone deposition mechanism where pheromones are deposited only at 134 nodes or points of turns. Compared to other works which deposits pheromones anywhere in the map, 135 the node representation minimizes memory consumption and communication data. An area-capture 136 mechanism was also integrated in the proposed algorithm which increases the efficiency of the system 137 as robots can work without interruption from other robots. Simulation results show that the proposed 138 bio-inspired mechanism can autonomously coordinate tasks in a multi-robot system. Future works 139 140 consists of incorporating fuzziness in the system with sub-area captures.

Author Contributions: A.R. and A.A.R. conceived the idea, designed, performed experiments, and summarized
 the research; Y. K. made valuable suggestions to analyze the data and improve the manuscript. Y. H. provided
 important feedback to improve the manuscript. The manuscript was written by A.R.

¹⁴⁴ **Funding:** This research received no external funding.

145 **Conflicts of Interest:** The authors declare no conflict of interest.

146 **References**

- Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Hitchhiking Robots: A Collaborative Approach for
 Efficient Multi-Robot Navigation in Indoor Environments. *Sensors* 2017, *17*, 1878. doi:10.3390/s17081878.
- Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C.; Watanabe, M. Hitchhiking Based
 Symbiotic Multi-Robot Navigation in Sensor Networks. *Robotics* 2018, 7, 37. doi:10.3390/robotics7030037.
- Karlson, P.; Luscher, M. 'Pheromones': a New Term for a Class of Biologically Active Substances. *Nature 183*, 55 56 **1959**, *183*, 55–56.
- Meer, R.K.V.; Breed, M.D.; Espelie, K.E.; Winston, M.L. *Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites*; Westview Press, 1998.
- 5. Touhara, K. *Pheromone Signaling Methods and Protocols*; Humana Press, 2013.
- Mohan, Y.; Ponnambalam, S. An extensive review of research in swarm robotics. Nature Biologically
 Inspired Computing, 2009. NaBIC 2009. World Congress on, 2009, pp. 140–145.
- Payton, D.; Estkowski, R.; Howard, M. Compound Behaviors in Pheromone Robotics. *Robotics and Autonomous Systems* 2001, 44, 229–240.
- Filipescu, A.; Susnea, I.; Filipescu, S.; Stamatescu, G. Wheeled mobile robot control using virtual
 pheromones and neural networks. Control and Automation, 2009. ICCA 2009. IEEE International
 Conference on, 2009, pp. 157–162.
- Fujisawa, R.; Shimizu, Y.; Matsuno, F. Effectiveness of tuning of pheromone trail lifetime in attraction of
 robot swarm. System Integration (SII), 2011 IEEE/SICE International Symposium on, 2011, pp. 702–707.
- Purnamadjaja, A.; Russell, R. Pheromone communication: implementation of necrophoric bee behaviour
 in a robot swarm. Robotics, Automation and Mechatronics, 2004 IEEE Conference on, 2004, Vol. 2, pp.
 638–643 vol.2.
- Florea, B.F.; Grigore, O.; Datcu, M. Pheromone averaging exploration algorithm. Advanced Robotics
 (ICAR), 2015 International Conference on, 2015, pp. 617–622.
- Pearce, J.; Rybski, P.; Stoeter, S.; Papanikolopoulos, N. Dispersion behaviors for a team of multiple
 miniature robots. Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference
 on, 2003, Vol. 1, pp. 1158–1163 vol.1.
- Silva, G.; Costa, J.; Magalhaes, T.; Reis, L. CyberRescue: A pheromone approach to multi-agent rescue
 simulations. Information Systems and Technologies (CISTI), 2010 5th Iberian Conference on, 2010, pp. 1–6.
- Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. On a bio-inspired hybrid pheromone signalling
 for efficient map exploration of multiple mobile service robots. *Artificial Life and Robotics* 2016, pp. 1–11.
 doi:10.1007/s10015-016-0279-4.
- Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Avoiding blind leading the blind. *International Journal of Advanced Robotic Systems* 2016, *13*, 1729881416666088. doi:10.1177/1729881416666088.
- 16. Calvo, R.; de Oliveira, J.; Figueiredo, M.; Romero, R. Bio-inspired coordination of multiple robots systems
 and stigmergy mechanims to cooperative exploration and surveillance tasks. Cybernetics and Intelligent
 Systems (CIS), 2011 IEEE 5th International Conference on, 2011, pp. 223–228.
- Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Symbiotic Navigation in Multi-Robot Systems with
 Remote Obstacle Knowledge Sharing. *Sensors* 2017, *17*, 1581. doi:10.3390/s17071581.
- Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Emaru, T.; Kobayashi, Y. On a Hopping-points SVD and Hough
 Transform Based Line Detection Algorithm for Robot Localization and Mapping. *International Journal of Advanced Robotic Systems* 2016, 13, 98. doi:10.5772/63540.
- Ravankar, A.; Kobayashi, Y.; Ravankar, A.; Emaru, T. A connected component labeling algorithm for
 sparse Lidar data segmentation. Automation, Robotics and Applications (ICARA), 2015 6th International
 Conference on, 2015, pp. 437–442. doi:10.1109/ICARA.2015.7081188.
- Hart, P.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
 Systems Science and Cybernetics, IEEE Transactions on **1968**, *4*, 100–107. doi:10.1109/TSSC.1968.300136.

© 2018 by the authors. Submitted to *Proceedings* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).