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Abstract: The objective of this work was to perform a quantitative analysis of the correlation 11 

between the forest burning index and abnormal decrease in river discharge under conditions of 12 
cryolithozone of Siberia. We analyzed the long-term and seasonal variation of rivers discharge in 13 
Central Siberia (Nizhnyaya Tunguska and Podkamennaya Tunguska rivers) and in Eastern Siberia 14 
(Aldan, Vilyui rivers) together with the forest burning dynamics within the river basins. The data 15 
on rivers discharge was obtained from the archive of The Global Runoff Data Centre for 1939–2015. 16 
Relative burned area (RBA) index was calculated from wildfires database collected using satellite 17 
technique for 1996–2017. RBA was evaluated as ratio of annual burned area within the river basins 18 
to the total area of the river basin. RBA values of 2.5–6.1% per year were considered as extremely 19 
high. The analysis of available chronologies of extreme fire events in Central and Eastern Siberia 20 
showed high correlation (r > –0.55) with long-term data on the runoff minima.  Abnormally low 21 
level of discharge was 68–78% of the averaged annual rate. The most significant response of river 22 
discharge to the wildfire effect was shown for summer-autumn period of season after extreme 23 
burning in mid-summer. 24 
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1. Introduction 28 

In Siberia, significant and long-term post-fire effects are observed in the permafrost zone [1–4]. 29 
In particular, these are changes and degradation of the near-surface layers of permafrost, short-term 30 
and long-term anomalies of the temperature and water balance [5–9]. This affects the flow regime of 31 
small and medium rivers of Siberia, the supply of which is determined by groundwater (10–25% of 32 
total) [10]. Interannual fluctuations and trends in river discharges are mainly associated with 33 
climatic processes in Siberia [11–14]. And the results of the analysis of the of wildfire impact on river 34 
flows are practically not discussed in the literature.  35 

In this work, we determined the degree of connection between intra- and interseasonal 36 
variations in river runoff with the relative burned area (RBA) of forests in the river basins of Siberia. 37 
The following aspects of the issue were considered: (i) the correlation of long-term data on river flow 38 
anomalies and RBA; (ii) the intraseasonal variations of the river flow under post-fire conditions; (iii) 39 
features of post-fire river runoff dynamics. 40 

The study of this issue allows us to predict the long-term response of the boreal ecosystems to 41 
the fire impact, as one of the most significant factors under current climate conditions and fire 42 
regimes [3,13]. 43 
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2. Results 44 

Data on fires and river discharges are presented in table 1. 45 
In some seasons, we fixed the level of runoff at 68–78% of the average annual rate. When 46 

analyzing the available chronologies of extreme fire events in Central and Eastern Siberia [15–18], it 47 
was possible to compare the discharge minima with extreme fire events (Fig. 2). The frequency of 48 
extremely low runoffs, ranging from 18 to 25 years, is consistent with the reported data on the 49 
variability of the width of the tree rings in larch forests of Central Siberia [19], which is determined 50 
by the temperature and the moisture regimes of weather. Thus, the phase coincidence of the flow 51 
anomalies and extreme fire events associated with the precipitation deficit is expected. 52 

Table 1. Long-term mean of discharge anomalies and RBA (γmeanσ, γmах) for the river basin 53 
territories. 54 

River 

Area of 

basin1, 

mln ha 

Discharge, 

km3 

Discharge anomaly, % γ, % 

min max mean max σ 

Lower Tunguska 45.6 108.25 –22 29 0.49 2.99 0.60 

Podkamennaya Tunguska 23.8 49.87 –21 40 0.51 4.12 0.65 

Vilyui 45.5 47.97 –32 36 0.76 6.13 1.15 

Aldan 72.8 173.59 –28 32 0.67 5.21 0.77 
1 according to calculation in GIS. 55 

 

Figure 2. Long-term data on total annual runoff (km3). The dots indicate the minima which are 56 
corresponding to the dates of extreme fire events. Dotted line – annual mean value. River basins: (a) 57 
Podkamennaya Tunguska; (b) Lower Tunguska; (c) Viluy; (d) Aldan. 58 
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Solving the problem of quantitative description of the relationship, we jointly analyzed data on 59 
the forest fire in the borders of river basins (γ,%) and runoff anomalies for the first half of the 60 
growing season (March – July) for 2002–2015 (Fig. 3). The results of the correlation analysis of the 61 
relationship between the intraseasonal dynamics of the discharge and the RBA are presented in 62 
(Table 2). 63 

 

Figure 3. Correlation field for RBA within the river basins (γ,%) and discharge anomalies for 64 
the first half of the vegetation season (March – July) for the rivers of Yakutia: Aldan (a), Vilyui (b) 65 
and Central Siberia: Podkamennaya Tunguska ( c), Lower Tunguska (g). 1 – experimental data, 2 – 66 
linear model. 67 

Table 2. Correlation between discharge anomalies and RBA during the season. 68 

River 

Correlation during the season 

November– 

February 
March–April May–July August–October 

Lower Tunguska –0.43 –0.25 –0.83 –0.77 

Podkamennaya Tunguska –0.20 –0.24 –0.66 –0.57 

Vilyui –0.22 –0.16 –0.42 –0.42 

Aldan –0.21 –0.10 –0.47 –0.22 

All figures and tables should be cited in the main text as Figure 1, Table 1, etc. 69 

3. Discussion 70 

In [14], it was shown that the data on the moisture content in the soil are an effective indicator of 71 
the prediction of forest burning in the permafrost zone of Siberia. At the same time, it is noted that 72 
the moisture reserves in the soil in the current season determine the degree of fire danger of this and 73 
subsequent season. To use these results in fire monitoring practice requires a wide network of data 74 
collection points. It is not always possible to implement in remote areas of Central and Eastern 75 
Siberia. An alternative solution is the development of methods for remote monitoring of water mass 76 
dynamics according to gravimetric survey data [1,20]. In our work, a qualitatively similar result was 77 
obtained, while the data on anomalies of river discharge are a more effective criterion for predicting 78 
the fire regime within the river basins. 79 
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Also the response to the fire impact was recorded in the territories of the considered basins of 80 
the rivers of Central Siberia, expressed in an abnormal low discharge in the post-fire 81 
summer-autumn period (r > –0.55). At the same time, the level of relation is lower for the basins of 82 
rivers in Eastern Siberia/Yakutia (r < –0.45). 83 

The revealed differences can be a consequence of the post-fire condition of permafrost soils, 84 
which determines the share of groundwater in the formation of the total river flow. Post-fire 85 
transformation of vegetation and on-ground cover can be the cause of heat and water balance 86 
anomalies [17,21], changes in the depth of seasonally thawed layer of soils, changes in water 87 
permeability of soil horizons [22,23]. Thus, if we do not take into account seasonal variations in the 88 
precipitation regime, the features of the post-fire discharge anomalies are determined by condition 89 
of system “fire effect” – “ground cover and vegetation” – “soil”. The influence of wildfires is 90 
significant only for the seasonally thawed layer that is active in the summer-autumn period. 91 

A more detailed study of post-fire effects on river discharge anomalies is important for 92 
predicting the response of boreal ecosystems to the fires effects, which currently tends to increase 93 
[1,4,24]. 94 

4. Materials and Methods  95 

The area of interest is the territory of Siberia within the boundaries of 57–67 N, 85–110 E. The 96 
total area is more than 110 million hectares. The studies were performed for four river basins of 97 
Central Siberia and Yakutia (Fig. 1), such as Lower Tunguska, Podkamennaya Tunguska (Basin 98 
District of Yenisei River), and Aldan, Viluy (Basin District of Lena River). 99 

 
Figure 1. Area of interest. River basins and hydrological points for data collection. River basins 100 

are: 1 – Lower Tunguska, 2 - Podkamennaya Tunguska, 3 - Viluy, 4 - Aldan. 101 
 102 
The long-term data on the flow rate (m3/s) and river discharge (km3) were compiled from the 103 

open database R-ArcticNET 4.0 (http://www.R-ArcticNET.sr.unh.edu), an integrated monitoring 104 
system Arctic-RIMS (Rapid Integrated Monitoring System) (http://rims.unh.edu/index.shtml), The 105 
Global Runoff Data Center (http://www.bafg.de), Composite Runoff Field V 1.0 (http: 106 
//www.compositerunoff.sr.unh.edu/) [25–27]. We analyzed the monthly average water runoff for 107 
1936–2015 at the following hydrological posts: Bolshoy Porog (basin of Lower Tunguska), 108 
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Kuzmovka (basin of Podkamennaya Tunguska), Khatyryk-Khomo (basin of Vilyui River), 109 
Verkhoyanskiy Perevoz (basin of Aldan River).  110 

We determined the average annual value of the discharge ( iRD ) and analyzed deviations 111 

(
*

iRD ) from the average statistical norm (discharge anomalies) for the each month (i) as 112 

%100
)(*





i

ii
i

RD

RDRD
RD

. 
(1) 

We determined the relative burned area (RBA) of forests within the river basins on the basis of 113 
satellite fire monitoring data of the Sukachev Institute of Forest (Federal Research Center KSC SB 114 
RAS, Krasnoyarsk, Russia). The data were presented in the format of a geoinformation (GIS) wildfire 115 
database for 1996–2015 [28]. RBA (γ) was defined for each month, as the ratio of the total area of fires 116 
(Sburned) to the total area of the river basin (S): 117 

%100


S

Sburned
 . (2) 

Data processing was performed using geospatial pre-processing of vector data layers using GIS 118 
tools, correlation and statistical analysis, and method for optimization of regression coefficients. 119 

5. Conclusions  120 

For the current river basins the scale of wildfire impact is up to 2.5–6.1% of the total area per 121 
year. It is effects strong on forest ecosystems of the permafrost zone. Within the river basins of 122 
Central Siberia, the response to pyrogenic (post-fire) impact is expressed in anomalies of discharge 123 
in the post-fire summer-autumn period (r >–0.52). For river basins in Eastern Siberia, the correlation 124 
is lower. The level of significance is determined highly likely by the state and post-fire changes in the 125 
permafrost soil conditions. 126 
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