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Motivation: Climate Change
Global Precipitation Change (For the last 2 decades and Projected Periods)
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RCP : Representative Concentration Pathways https://gisclimatechange.ucar.edu/inspector




Motivation: Climate Change and Extreme Events
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Figure 1.1. Annual count of extreme events in Turkey in the period of 1940-2017 _T_L%Egsiigblgisnibu“on of extreme events and their types in

Annual count of extreme events in Turkey shows an increasing trend in 1940-2017 period (Climate Assessment 2017
Report, February 2018 — State Meteorological Service).

During 2017 most hazardous extreme events were; heavy rain/floods (31%), wind storm (36%o), hail (16%0), heavy
snow (7%o), and lightning (4%o) 4




Problem Statement

Climate change in Turkey has been evaluated in many different studies with its different aspects. Majority of analysis

performed and the future estimation works were focused on temperature and precipitation changes which are the most
Important climate parameters causing the extreme events.

In the last decades, heavy rainfall and flash flooding caused various damages in Turkey; for example settlements were
damaged, road transportation and vehicles are disrupted, and life was negatively affected in Ankara

Objectives

To analyze the rainfall extreme value frequencies for stationary and nonstationary conditions in Ankara region,

To produce Return Levels in stationary and non-stationary conditions with observed data and future projections,.

To figure out the superiority of nonstationary and stationary models to each other,




Methodology and Data

The methodology of precipitation analysis in this study consists of;
(1) Trend analysis is carried out for observed (1950-2015) and projected data (2015-2098)

(2) Projected data is disaggregated into finer scales (5 min) and then it is aggregated to next analysis time scales (10, 15,
and 30 min, ...)

(3) Stationary GEV (St) models are developed, return levels are derived for desired return periods considering single and
multi-time periods for observed and single period for projected data

(4) Non-stationary GEV (NSt) models are developed, return levels are derived for desired return periods for observed and
projected data

(5) Stationary and Non-stationary model results were compared

Observed Data for Ankara - 1950-2015 (State Meteorological Services)

Projected Data; Three global climate models (GCM) are used; namely HadGEM2-ES, MPI-ESM-MR and GFDL-
ESM2M. These models are operated with the RCP 4.5 and RCP 8.5 emission scenarios - 2015-2098 (State
Meteorological Services) 6




Methodology
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Figure 1.3. Rainfall Data Analyses Framework




Observed Data Trends & Change Point
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Figure 1.4. Sub-Hourly Time Series Trend Figure 1.5. Hourly Time Series Trend
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Figure 1.6. Average annual maximum rainfall intensities (mm) for sub-hourly and hourly storm durations




Observed Data
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Figure 1.7. Storm Durations Used for Stationary Models
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Figure 1.8. Stationary and Best Fit Nonstationary Model Return Level (mm) Comparison - Return Period vs. Return Level

The shorter the storm duration the larger the differences between the non-stationary and stationary extremes.
Among the storm durations, only one hour time series exhibit larger values for its nonstationary model return level
values, however this is not valid for shorter return periods such as 5 years or 20 years

Sub-hourly storm durations indicate larger difference than hourly storm durations and non-stationary estimates are

smaller than their corresponding stationary values 10




Projected Data
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Figure 1.9. Projected Storm Durations Used for Stationary Models for 2015-2098 period
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Figure 1.11. Stationary Model Results for Projected Time Series
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Figure 1.12. 10-15 Minutes and 1-6 Hours Ensemble Model Comparison for Projected Data

On average nonstationary models produce mostly lower return levels for mid and longer return periods for all durations and

similar results for short (2 and 5 years) return periods except one hour storm duration. .
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Figure 1.15. Ten Minutes Data Model Comparison - Best Fit Nst and St for Observed and Projected Data and SMS (State Meteorological Service) Data
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Figure 1.16. Fifteen Minutes Data Model Comparison - Best Fit Nst and St for Observed and Projected Data and SMS (State Meteorological Service) Data
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Figure 1.17. One Hour Data Model Comparison - Best Fit Nst and St for Observed and Projected Data and SMS (State Meteorological Service) Data
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Figure 1.18. Six Hours Data Model Comparison - Best Fit Nst and St for Observed and Projected Data and SMS (State Meteorological Service) Data




Summary and Conclusions:

« Stationary GEV models were capable of fitting extreme rainfall data for all durations but the developed non-stationary
GEV models showed advantage over the stationary models

» The differences in design rainfall estimates between two time slice, entire period and nonstationary assumption models
support the need to update the current information, with the most recent data and approaches.

 The differences also reveal the need to conduct analysis using future climate data.

» Nonstationary model results are in general exhibited smaller return level values with respect to stationary model results of
each storm duration for the observed data driven model results.

« On average nonstationary models produce mostly lower return levels for mid and longer return periods for all durations
and similar results for short (2 and 5 years) return periods except one hour storm duration for the projected data.

« Almost all the nonstationary model maximum return level results are significantly higher than stationary model maximum

return level results for all storm durations and return periods for the projected data driven model results.
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