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Abstract:  10 

Annual maximum daily rainfalls will change in the future because of climate change, according to 11 
climate projections provided by EURO-CORDEX. This study aims at understanding how the 12 
expected changes in precipitation extremes will affect the flood behavior in the future. Hydrological 13 
modelling is required to characterize the rainfall-runoff process adequately in a changing climate to 14 
estimate flood changes. Precipitation and temperature projections given by climate models in the 15 
control period usually do not fit exactly the observations in the same period from a statistical point 16 
of view. To correct such errors, bias correction methods are used. This paper aims at finding the 17 
most adequate bias correction method for both temperature and precipitation projections, 18 
minimising the errors between observed and simulated precipitation and flood frequency curves. 19 
Four catchments located in central western Spain have been selected as case studies. The HBV 20 
hydrological model has been calibrated, using the observed precipitation, temperature and 21 
streamflow data available at a daily scale. Expected changes in precipitation extremes are usually 22 
smoothed by the reduction of soil moisture content due to expected increases in temperatures and 23 
decreases in mean annual precipitation. Consequently, rainfall is the most significant input to the 24 
model and polynomial quantile mapping is the best bias correction method. 25 
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1. Introduction 29 

Climate change is a reality and affects the most dangerous natural hazard in Europe, floods. 30 
Because of that, several studies and models have been developed to try to prevent their damages. In 31 
Spain, there are two sources of climate projections under climate change supplied by AEMET 32 
(‘Agencia Estatatal de Metorología’, in Spanish) and CORDEX. [1] found that AEMET projections do 33 
not characterise adequately extreme events. Consequently, in this study climate projections supplied 34 
by EURO-CORDEX are used. These climate projections denote that annual maximum daily rainfall 35 
quantiles will increase in some parts of Spain. Temperature and precipitation time series are the input 36 
data of the HBV model, calibrated with the methodology proposed [2]. 37 

GCM have limited capacity to capture climatic variations at catchment scale. Therefore, the 38 
mismatch between general and regional climate models needs to be corrected [3]. In addition, inputs 39 
to obtain simulated floods used to design spillways need to be the most similar to observagtions, in 40 
order to obtain accurate predictions in the future. Consequently, bias correction methods will be 41 
applied to both temperature and precipitation time series. 42 
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2. Methods 43 

The methodology consists of the following steps: (i) calibration of the HBV model to adequately 44 
characterize the rainfall-runoff processes in a changing climate; (ii) selection of the best bias correction 45 
method for precipitation and temperature time series, and (iii) assess the expected changes in flood 46 
quantiles in the future caused by climate change. A GEV distribution has been used to obtain flood 47 
quantiles for a set of return periods. 48 

2.1. Study area and data 49 

Four catchments have been selected as case studies. They are located in the Douro river basin, in the 50 
northwest part of Spain (Figure 1). A dam is located at the outlet of each catchment. Consequently, 51 
observed data of inflow discharges are not recorded directly, but they can be estimated from 52 
observations of mean daily reservoir water levels and dam releases, collected by the Centre for 53 
Hydrographic studies of CEDEX. 54 

 55 

Figure 1. (a) Location of the case studies in Spain; (b) Catchments of the four case studies. 56 

Time series of daily observations of rainfall and temperature were supplied by the AEMET. Gaps 57 
in time series were filled by using observations at nearby gauging stations. 58 

Climate change projections provided by 12 regional climate models of the EURO-CORDEX 59 
programme have been used (Table 1). Such projections are composed of daily rainfall and 60 
temperature time series with a spatial distribution through a grid with cells of 0.11º. The same control 61 
period (1971-2004, hydrological years) and future period under climate change (2011-2094, 62 
hydrological years) have been considered for all the climate models. The two representative 63 
concentration pathways (RCP) considered by the models, RCP 4.5 and 8.5, have been used. 64 

Table 1. Regional Climate Models used 65 

Acronym CGM RCM 

ICH-CCL ICHEC-EC-EARTH CCLM4-8-17 

MPI-CCL MPI-ESM-LR CCLM4-8-17 

MOH-RAC MOHC-HadGEM2-ES RACMO22E 

CNR-CCL CNRM-CMS CCLM4-8-17 

ICH-RAC ICHEC-EC-EARTH RACMO22E 

MOH-CCL MOHC-HadGEM2-ES CCLM4-8-17 

IPS-WRF IPSL-CMSA-MR WRF331F 

IPS-RCA IPSL-CM5A-MR RCA4 

MOH-RCA MOHC-HadGEM2-ES RCA4 

ICH-RCA ICHEC-EC-EARTH RCA4 

CNR-RCA CNRM-CM5 RCA4 

MPI-RCA MPI-ESM-LR RCA4 
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2.2. HBV model and calibration  66 

The hydrological response in the four catchments has been simulated with the HBV rainfall-67 
runoff model [4]. Specifically, the HVB-light-GUI 4.0.0.7 version has been used. The model 68 
parameters have been calibrated using Monte Carlo simulations and GAP optimization. Both tools 69 
are integrated in the HBV software.  70 

Model parameters have been calibrated using the goodness of fit function ‘Reff’ integrated in 71 
the HBV software, which compares the prediction supplied by the model with the simplest possible 72 
prediction, a constant value equal to the mean value of observations over the entire period. (Eq. 1). 73 

𝑅𝑒𝑓𝑓 = 1 −
∑(𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑂𝑏𝑠(𝑡))2

∑(𝑄𝑂𝑏𝑠(𝑡)−𝑄𝑜𝑏𝑠)̅̅ ̅̅ ̅̅ ̅̅ 2    (1) 

 where Qsim(t) is the simulated discharge at time step t, Qobs(t) is the observed discharge at time 74 
step t and 𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅  is the mean value of discharge observations.  75 
A sensitivity analysis with 1,000,000 Monte Carlo simulations has been donehas identified the 76 

most important parameters in the four catchments: FC, PERC, K0 and K1. FC is the maximum soil 77 
moisture storage. PERC, K0 and K1 are associated with soil infiltration represented by the model with 78 
three boxes. As expected, the snow routine is not important in the case studies. 79 

Flood quantiles have been calculated by fitting a Generalized Extreme Value (GEV) distribution 80 
to the annual maximum flows simulated by the model. Flood quantiles obtained by simulation have 81 
been compared with flood quantiles obtained from observed data, for a set of return periods. An 82 
iteration process has been used, prioritizing the similarity in the simulation of extreme values, 83 
because the results of the study will be applied to dam design. 84 

2.3. Bias Correction  85 

Precipitation and temperature projections supplied by climate models in the control period 86 
usually do not fit exactly the observations in the same period from a statistical point of view. Such 87 
errors could affect simulated flows in the future period. First, temperature and precipitation have 88 
been corrected separately. Second, temperature and precipitation correction techniques are combined 89 
to identify the best bias correction methodology. Quantile mapping mapping techniques have been 90 
used: QM linear transformation and QM power transformation [5,6] for precipitation series and 91 
simple seasonal bias correction for temperature series [6]. 92 

3. Results and Discussion 93 

The best bias correction method has been identified for: (i) temperature projections, in terms of 94 
monthly averages; (ii) extreme precipitation in climate projections, in terms of frequency curves for 95 
annual maximum series; and (iii) extreme simulated discharges. 96 

3.1. Temperature Correction 97 

In the four catchments, monthly mean temperatures supplied by climate models are significantly 98 
lower than observations. The difference between monthly temperatures supplied by each climate 99 
model and observations has been added to the temperature time series in each month to correct the 100 
bias.[6] (Figure 2).  101 

3.2. Precipitation Correction 102 

Climate models supply differing precipitation magnitudes in the control period compared to 103 
observations. In the Barrios de Luna catchment, climate models supply larger extreme precipitations 104 
than observations. However, in the other three catchments, climate models supply lower 105 
precipitations.    106 

A set of methods have been considered to correct the errors [6]. In this paper, the Quantile 107 
mapping technique has been used, consisting of fitting a function to the comparison between data 108 
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supplied by the models and observations. Linear and polynomial functions have been considered. 109 
The fitted function is used to correct both the control and future data. 110 

 111 

Figure 2. Comparison between monthly mean temperatures supplied by climate models and 112 
observations in the control period. Blue lines are observations. Red lines represent the median of the 113 
12 climate models considered.  114 

Results obtained after correcting bias by the lineal and polynomial techniques show smaller 115 
errors than in the case of raw precipitation data. For precipitation frequency curves, the linear 116 
correction is the best bias corection method. 117 

 118 

 119 
 120 

Figure 3. Frecuency curves of annual maximum daily precipitation in two catchments 121 
(Camporredondo and Porma). Blue lines are observations. Red lines represent the median of the 12 122 
climate models considered. The first column shows raw precipitation supplied by climate models. 123 
The second column, linear bias correction. The third, polynomial bias correction. Each row shows a 124 
case study. 125 

3.3. Flood frequency curves in the control period  126 

Simulations of the HBV model have been conducted with a set of combinations of raw and bias 127 
corrected temperature and precipitation time series as input data, in order to compare the bias 128 
correction techniques. The best bias correction technique is identified in terms of the smallest errors 129 
with the flood frequency curve estimated with observations. The higher return periods have been 130 
considered due to its importance in dam design. In general, the smallest errors are obtained with the 131 
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polynomial bias correction technique. In particular, the methodologies with the smallest absolute 132 
error for higher return periods are: raw temperature and precipitation supplied by climate models in 133 
Barrios de Luna; lineal correction for precipitation and mean monthly temperature correction in 134 
Camporredondo; polynomial correction for precipitation and mean monthly temperature correction 135 
in Porma; and polynomial correction for precipitation and raw temperature in Riaño. 136 

 137 

 138 
Figure 4. Comparison between flood frequency curves with observations and HBV simulations using a set of 139 
combinations of bias correction techniques in two catchments (Camporredondo and Porma). Blue lines are 140 
observations. Red lines represent the median of the 12 climate models considered. 141 

3.2. Flood frequency curves in the future period 142 

 143 

Figure 5. Flood frequency curves in the future period (2011-2095) with the best bias correction 144 
techniques referred to in the previous section. 145 
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Finally, precipitation and temperature projections in the future (2011-2095) have been obtained 146 
in each catchment with the best bias correction techniques identified in the previous step, Simulations 147 
with the HBV model show that, in general, flood frequency curves decrease in the future, though an 148 
increase can be seen in some cases. 149 

4. Conclusions  150 

Temperature time series supplied by climate models in the control period are significantly lower 151 
than observed data. In addition, bias correction of precipitation time series is more important than 152 
temperature correction, affecting flow results.  153 

It has been found that the best bias correction method for precipitation projections, in terms of 154 
precipitation frequency curves, differs from the best method in terms of flood frequency curves. 155 
Simulations with the HBV model in the future period under climate change assumptions show a 156 
general reduction in flood quantiles, smoothing the increases identified in precipitation quantiles. In 157 
the control period, when precipitation quantiles are larger than observations, flood quantiles are 158 
similar to observations. In general, the period 2071-2095 presents the smallest reductions and, in some 159 
cases, the larger increases. 160 

In terms of high return periods in flood frequency curves, the best bias correction techniques are 161 
the polynomial correction for precipitation and the monthly mean correction for temperature, in the 162 
four case studies,.  163 
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AEMET: Agencia Española de Meteorología 166 
CORDEX: Coordinated Regional Climate Downscaling Experiment 167 
GCM: General Climate Model 168 
GEV: Generalized extreme value 169 
HBV: Hydrologiska Byråns Vattenbalansavdelning 170 
QM: Quantile Mapping 171 
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