Effort and performance of the management of water for agriculture under climate change in Southern Europe

Álvaro Sordo-Ward, Alfredo Granados, Ana Iglesias and Luis Garrote

TECHNICAL UNIVERSITY OF MADRID

- Water availability
 - Maximum demand than can be supplied at a given point in the river network under certain conditions
 - Focus: water availability for irrigation once urban demand is satisfied
- WAAPA model to account for reservoirs in water resources systems
 - Components: streamflow, storage, demands and environmental flows
 - Analysis under current and climate change scenarios
- Effort and performance of management measures
 - Study the effect of policy measures required to maintain irrigation water availability in river basins
 - Analysis of increased storage, increased water efficiency for urban use and water allocation to environmental flows

Approach

Case study: Six basins in Europe

WAAPA model

WAAPA : Water Availability and Adaptation Policy Analysis

Building geographical data: reservoir location

GTOPO30 Hydro1k Dataset

World Register of Dams

Dams aligned to Hydro1k rivers

Dams georeferenced in Google Earth

Basin delineation

Water availability analysis

- Multiple scenarios were compiled from different sources
- Runoff from RCMs in PRUDENCE project
 - Eight climate models: DMI, ETHZ, GKSS, ICTP, KNMI, MPI, SMHZ, UCM
 - Two SRES projections: A2, B2
- Runoff from RCMs in PRUDENCE project
 - Three climate models: CRNM, KNMI, ETHZ
 - One SRES projection: A1B
- Runoff computed with PCRGLOBWB model in the ISIMIP experiment
 - Five climate models: GFDL-ESM2NM, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M
 - Four RCP projections: RCP2P6, RCP4P5, RCP6P0 and RCP8P5

Validation against GRDC data

• Streamflow data had to be corrected for bias

Results for climate forcing: model and scenario uncertainty

Mean Annual Runoff (km³/yr)

RCP-2

ORCP-4

RCP-6

A2

B2

A1B

RCP-8

Results for water availability: model and scenario uncertainty

Water Availability (km³/yr)

RCP-2

ORCP-4

RCP-8

A1B

A2

Results for water availability: adaptation effort

A1B emission scenario; long term 2060-2099

Volume Reliability (%)

• Policy target

- Maintain acceptable reliability under climate change scenarios
- Main policy action
 - Demand reduction to maintain reliability under climate change
- Additional policy actions
 - Supply enhancement through increased reservoir storage
 - Increase water efficiency in urban use
 - Modify environmental flow conditions

Sensitivity of Demand-Reliability Curve to Public Policy

GUADALQUIVIR BASIN: INCREASE RESERVOIR STORAGE

CLIMATE CHANGE: KNMI 2070-2100

IRRIGATION

Results for policy actions: effect on irrigation availability

A1B emission scenario; CRNM model; long term 2060-2099

Effort of policy action

Irrigation Demand (km³/yr)

Results for water availability

A1B emission scenario; long term 2060-2099

Effort of policy action (km³ or km³/yr)

Reduction of Irrigation Demand (km³/yr)

- Climate forcing and water availability
 - All basins under study will have to reduce water allocation to irrigation
 - In some cases the adaptation effort will have to be very large
 - There is still very large model and emission scenario uncertainty
- Adaptation policy
 - Analyzed policies may compensate adverse effects of climate change on water availability, but only to some extent
 - The effectiveness and the required intensity of policy options depends on location: current water use, reservoir storage and hydrologic regime
 - Reservoir storage would require very large investments
 - Water efficiency of urban use has little scope
 - Water allocation to environmental flow shows the largest impact

Effort and performance of the management of water for agriculture under climate change in Southern Europe

Álvaro Sordo-Ward, Alfredo Granados, Ana Iglesias and Luis Garrote

TECHNICAL UNIVERSITY OF MADRID