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Abstract: This paper presents certain characteristics of trends in rainfall erosivity density (ED), that 9 

have not been so far investigated in depth in the current literature. Raw pluviograph data were 10 
acquired from the Greek National Bank of Hydrological and Meteorological Information for 108 11 
stations. Precipitation time series values were cleared from noise and errors and the ratio of missing 12 
values was computed. Erosive rainfalls were identified, their return period was determined using 13 
Intensity–Duration–Frequency (IDF) curves and erosivity values were computed. A Monte Carlo 14 
method was utilized to assess the impact of missing values ratio to the computation of annual 15 
erosivity (R) and ED values. It was found that the R values are underestimated in a linear way, while 16 
ED is more robust against the presence of missing precipitation values. Indicatively, the R values 17 
are underestimated by 49%, when only 50% of the erosive rainfall events are used while at the same 18 
time the estimation error of ED is 20%. Using predefined quality criteria for coverage and time 19 
length a subset of stations was selected. Their annual ED values, as well as the samples' 20 
autocorrelation and partial autocorrelation functions were computed, in order to investigate the 21 
presence of stochastic trends. Subsequently, Kendall's Tau was used in order to yield a measure of 22 
the monotonic relationship between annual ED values and time. Finally, the hypothesis that ED 23 
values are affected by elevation was tested. In conclusion: a) it is suggested to compute ED for the 24 
assessment of erosivity in Greece instead of the direct computation of R, b) stationarity of ED was 25 
found for the majority of the selected stations, in contrast to reported precipitation trends for the 26 
same time period and c) the hypothesis that ED values are not correlated to elevation could not be 27 
rejected. 28 
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 30 

1. Introduction 31 

Global warming is expected to increase the intensity of rainfall in Europe [1] and consequently 32 
to increase the soil erosion rates [2]. This potential may have a significant impact, especially on 33 
Greece, which is inflicted by the phenomenon of desertification, as a combined result of its bio-34 
geoclimatic characteristics and the overexploitation of its natural resources [3], taking into account 35 
that the most significant process responsible for soil loss in the country is related to rainfall [4].  36 

The second revised version of the Universal Soil Loss Equation, RUSLE2 [5], introduced the 37 
erosivity density (ED), as a measure of rainfall erosivity per unit rainfall to develop erosivity values 38 
for the USA, due to the fact that ED requires shorter record lengths, as 10 years lead to acceptable 39 
results, allows more missing data than R and is independent of the elevation. 40 

The problem of precipitation trends in Greece has been dealt with in the literature. In general, 41 
annual precipitation presents a downward trend for the period 1955-2001 [6]. Concerning the ED 42 
values in the country, Panagos et. al. [7] used interpolated values of R and also interpolated monthly 43 
precipitation, both coming from different datasets, to produce maps of seasonal ED values and 44 
plotted the average values per 3 decades and the 9-year moving average for 8 stations. However, 45 
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surveys [8, 9] of the above pluviograph data revealed significant proportions of missing values that 46 
affect the calculations of R. 47 

This study aims to assess the impact of missing values ratio to the computation of R and ED 48 
values in a numerical way, as RUSLE2 uses a theoretical justification. Also, its intention is to test the 49 
hypothesis that ED is independent of elevation and investigate its temporal trends in Greece using 50 
the latest methodologies developed and presented with RUSLE2, taking account the presence of 51 
missing values in precipitation records. 52 

2. Materials and Methods  53 

The data utilized in the analysis were taken from the Greek National Bank of Hydrological and 54 
Meteorological Information [10] and came from 108 meteorological stations. Due to the presence of 55 
missing values a subset of the stations was used for the analysis using two criteria: a) the stations 56 
must have a common time length of at least 30 years and b) during these years the coverage must be 57 
at least 45%. 58 

Initially, and after clearing the data from errors, the product of the kinetic energy of a rainfall 59 
and the maximum 30 min intensity, EI30 was computed using the pluviograph records [11,12]: 60 

𝐸𝐼30 = (∑ 𝑒𝑟 ⋅ 𝑣𝑟

𝑚

𝑟=1

) ⋅ 𝐼30 (1) 

where 𝑒𝑟 is the kinetic energy per unit of rainfall (MJ/ha/mm), 𝑣𝑟 the rainfall depth (mm) for the 61 
time interval 𝑟 of the hyetograph, which has been divided into 𝑟 = 1,2, … , 𝑚 sub-intervals and 𝐼30 62 
is the maximum rainfall intensity for a 30 minutes duration. On the grounds that the use of fixed time 63 
intervals to measure maximum rainfall amounts can lead to an underestimation of the true value [13–64 
15], the Hershfield factor equal to 1.14 was used, as Weiss proposed [13]. The quantity 𝑒𝑟 was 65 
calculated for each 𝑟 using the kinetic energy equation of Brown and Foster [16] as corrected and 66 
used in RUSLE2 [5,17]: 67 

𝑒𝑟 = 0.29 ⋅ (1 − 0.72𝑒−0.82𝑖𝑟) (2) 

where 𝑖𝑟 is the rainfall intensity (mm/hr). A rainfall event was divided into two parts, if its 68 
cumulative depth for duration of 6 hours at a certain location is less than 1.27 mm. A rainfall is 69 
considered erosive if it has a cumulative value greater than 12.7 mm and these were used in the 70 
calculations. All rainfalls with extreme EI30 values and a return period greater than 50 years were 71 
deleted using the intensity – duration – frequency curves for each station, as they have recently been 72 
published [18]. After the computation of EI30 values, the annual rainfall erosivity density 𝐸𝐷𝑗 73 

(MJ/ha/h) per station was calculated: 74 

𝐸𝐷𝑗 =  
∑ (𝐸𝐼30)𝑘

𝑚𝑗

𝑘=1

𝑃𝑗

  (3) 

where 𝑚𝑗 is the number of storms during year 𝑗, (𝐸𝐼30)𝑘 the erosivity of storm 𝑘 and 𝑃𝑗 the annual 75 

precipitation height. The numerator in Equation 3 is the annual rainfall erosivity 𝑅𝑗 (MJ.mm/ha/h). 76 

A Monte Carlo procedure was used to assess the effect of missing values on the calculation. In 77 
this procedure a subset of the calculated EI30 values is extracted based on the data coverage and the 78 
water divisions for the selected stations. For 1,000 iterations a random sample per station and year is 79 
extracted to simulate different missing values ratios and the mean absolute percentage error (MAPE) 80 
is computed using the initial and the sampled values of ED and R: 81 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑌𝑡 − 𝑌𝑡,𝑚𝑖𝑠𝑠

𝑌𝑡

|

𝑛

𝑡=1

 (4) 

where 𝑡 = [1, … , 𝑛] is the year, 𝑌𝑡 is the computed annual value using all rainfall events per station 82 
and 𝑌𝑡,𝑚𝑖𝑠𝑠 is the computed value coming from the random sample. 83 
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 The autocorrelation coefficient function and the partial correlation coefficient function were 84 
compiled [19,20] to investigate the presence of serial correlation in the annual ED values per station.  85 
For every selected station the hypothesis that ED does not change over time is tested using the 86 
Kendall’s Tau [21] rank correlation value and the resulting p-values per station were adjusted using 87 
the Benjamini & Hochberg method in order to control the false discovery rate due to multiple 88 
statistical testing [22]. Finally, also the same method was utilized to test the hypothesis that the ED 89 
values per station are not affected by the elevation. The data importing, analysis and presentation 90 
were done using the R language for statistical computing and graphics [23] using the packages: 91 
hydroscoper [24], hyetor [25] and ggplot2 [26]. 92 

3. Results and Discussion 93 

Based on the criteria about common time length and coverage, 18 meteorological stations (Figure 94 
1; Table 1) were selected for a common time period of 31 years from 1966 to 1996. Using their 95 
pluviograph records, 29,333 rainfalls were extracted and 7,570 of them were erosive. Utilizing 96 
intensity-duration-frequency curves 20 rainfalls were removed as outliers, because their return 97 
period was from 50 up to 661 years. These return periods cause extreme annual R and ED values and 98 
would disproportionately affect the calculations. 99 

 100 

Figure 1. Stations’ location. With red and the corresponding number are symbolized the selected 101 
stations with a common time length for the time period 1966 -1996. With grey are symbolized the 102 
stations not used in the trends analysis. 103 

The computed mean value of R for the selected stations 930.05 MJ.mm/ha/h is close to the 104 
average value reported for Greece by Panagos et. al (807 MJ.mm/ha/h). In contrast, the computed 105 
mean value of ED, 2.41 MJ/ha/h, is two times the value reported in the same study (1.22 MJ/ha/h). 106 
The reason for this difference is that Panagos et. al did not use the same precipitation data for the 107 
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calculation of R, which came from pluviograph records, and ED, in which erosivity came from 108 
pluviograph records, but precipitation had different origin: one-km-global-spatial-resolution 109 
monthly values [27]. The Monte Carlo procedure results showed that ED is more robust against the 110 
presence of missing precipitation values. Using only 5% of the data, annual R values are 111 
underestimated on average by 85%, when the average estimation error of ED values is 50%. R is 112 
inversely proportional underestimated as the coverage ratio increases, while ED’s estimation error 113 
follows a parabolic curve. In the presence of 50% of the data, R values are underestimated by 49%, 114 
while at the same time the estimation error of ED is 20%. 115 

The findings regarding the samples’ autocorrelation coefficient functions and the partial 116 
correlation coefficient functions did not reveal any practical meaning of the statistically significant 117 
values that were found at specific lags in the time-series of a small number of stations. On account of 118 
the previous fact, it is safe to suppose that no stochastic trends exist for the examined time-series. The 119 
Kendall’s Tau rank correlation test results indicate that for the majority of the stations the null 120 
hypothesis that annual ED values change over time could not be rejected for a significance level α = 121 
5% (Table 1). Thus, it is reasonable to suppose that these time series are realizations of stationary 122 
processes. Concerning the relation between elevation and ED, the p-value = 0.053, using the same 123 
test, indicates that the null hypothesis that annual ED values is affected by the elevation could not be 124 
rejected for the same significance level α = 5%. 125 

 126 
Table 1. Location and analysis results for the stations with a common time length during 1966 -1996. 127 
ID is an abbreviation for the station ID as reported in the Greek National Bank of Hydrological and 128 
Meteorological Information, WD for the Greek Water Divisions, Lon for longitude, Lat for latitude, 129 
El for elevation, MCV for mean coverage per station, padj is the adjusted p-value from the test using 130 

the Benjamini & Hochberg method. With a star are marked the test results where the null 131 
hypothesis is rejected for a significance level α = 5%. 132 

 ID Name WD Lon () Lat () El (m) MCV (%) Tau padj 

1 200003 GRABIA GR07 22.43 38.67 381 73.4 0.12 0.612 

2 200011 LIDORIKI GR04 22.20 38.53 548 69.2 -0.09 0.612 

3 200015 PYRA GR04 22.27 38.74 1137 74.8 -0.11 0.612 

4 200018 AG. TRIADA GR07 22.92 38.35 400 65.4 0.31 0.081 

5 200021 DISTOMO GR07 22.67 38.43 458 60.3 -0.02 0.919 

6 200024 LEIBADIA GR07 22.87 38.44 176 56 -0.27 0.132 

7 200059 BASILIKO GR05 20.59 40.01 747 75.8 -0.11 0.612 

8 200092 ELASSONA GR08 22.19 39.89 276 71.7 0.02 0.919 

9 200135 KALYBIA GR02 22.30 37.92 822 65.3 0.29 0.123 

10 200142 NEMEA GR02 22.66 37.83 306 63.8 -0.26 0.132 

11 200144 SPATHOBOUNI GR02 22.80 37.85 150 48.1 -0.08 0.612 

12 200181 LESINIO GR04 21.19 38.42 2 59.9 0.45 0.055 

13 200190 POROS REG. GR04 21.75 38.51 182 67.8 -0.11 0.612 

14 200243 NEOCHORIO GR03 22.48 37.67 704 63.2 0.14 0.595 

15 200291 A. ARCHANES GR13 25.16 35.24 392 51.6 0.09 0.612 

16 200309 DRAMA GR11 24.15 41.14 100 69.6 0.10 0.612 

17 200311 PARANESTE GR12 24.50 41.27 122 66.1 -0.46 0.005* 

18 200346 KATERINE GR09 22.51 40.28 30 64.2 -0.15 0.595 

5. Conclusions 133 

Summarizing, the main conclusions of our study are: 134 
1. It is suggested to compute ED for the assessment of erosivity in Greece instead of the direct 135 

computation of R due to the large proportion of missing values in the pluviograph records. 136 
2. Stationarity of ED was found for the majority of the selected stations, in contrast to reported 137 

precipitation trends for the same time period. 138 
3. The hypothesis that ED values are not correlated to elevation could not be rejected. 139 
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