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INTRODUCTION OBJECTIVES 
Kidney cancer is fundamentally a metabolic disease1 and more than 30% of patients, often incidentally 
diagnosed by imaging procedures, exhibit locally advanced or metastatic renal cell carcinoma (RCC) at the time 
of diagnosis.2, 3 The disease is inherently resistant to chemotherapy4 and radiotherapy.5 Clear cell RCC (ccRCC) is 
the most common (75%) lethal subtype, and is considered a glycolytic and lipogenic tumor.6,7 Current research 
has shown that several metabolic alterations are associated with RCC and different potential biomarkers have 
been identified.7-9 Early diagnosis is needed to reduce the mortality associated to ccRCC, to give more 
opportunities for early intervention and improved outcome of ccRCC patients. In this context, lipids are 
candidate molecules to be explored in a non-targeted fashion as potential biomarkers for ccRCC diagnosis by 
means of lipid profiling experiments. 

 Optimize a protocol for extracting and analyzing lipids from human serum samples.  
 Profile the lipidome using a discovery-based lipidomics approach via UHPLC-QTOF-MS. 
 Compare the serum lipid profiles of ccRCC patients with those from healthy individuals. 
 Compare the lipid profiles along disease progression through the analysis of samples from patients with 

different ccRCC stages (I, II, III, IV). 
 Develop a machine learning method applying Support Vector Machines (SVM) with LASSO to find 

discriminant feature panels for sample classification. 
 Analyze the relative level change of discriminant features between the different classes and ccRCC stages. 
 Assign identities to the discriminant lipids in order to understand the tumor biology. 

• Lipid profiling coupled with SVM-LASSO multivariate analysis provided 2 discriminant feature 
panels for serum sample classification and prediction: i) 18 features allowed discriminating 
controls from ccRCC patients with 81% accuracy in an independent test set, and ii) 26 features 
allowed classifying stage I from stage III and IV ccRCC patients in an independent test set with 82% 
accuracy. 

Conclusions & Perspectives 

We acknowledge CONICET, ANPCYT, and MINCYT for providing the funding, and the BPMSO Biobank from 
Instituto de Oncología A. H. Roffo and Hospital Italiano de Buenos Aires for providing the samples.  
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Reverse Phase Chromatography:  Waters Acquity I-class UPLC system. Mobile phases: A= CH3CN 
with 0.1% acetic acid (v/v), 10 mM NH4CH3CO2 (60:40 v/v); B=isopropanol: CH3CN  (90:10  v/v) with 
0.1 % acetic acid (v/v) and 10 mM NH4CH3CO2. Waters BEH C18 UPLC column (1.0×100mm;1.7 µm 

particle size). Column temperature: 55 °C, Autosampler tray temperature: 5 °C. 
Mass Spectrometry: Waters Xevo G2S QTOF mass spectrometer operated in negative ESI Mode. 

Data acquisition in MSE mode. Probe capillary voltage: 2.3 kV; Sampling cone voltage: 30.0 V; 
Source temperature: 120 °C; Desolvation gas temperature: 300 °C.  Acquisition range: m/z 50-1200 
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The analysis was performed on age-matched serum samples 
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RESULTS 

Develop and Train Cross-Validated 
SVM Models and Find Top 
Discriminant Features using LASSO 
(least absolute shrinkage and 
selection operator)  
Find the Discriminant Feature 
Panel that Maximizes Classification 
Accuracy of the Validation Set.  
Evaluate the Model´s Performance 
with an Independent Test Set.  

Control vs ccRCC 

SI+SII vs  SIII+SIV 

Control ccRCC 

SI+SII SIII+SIV 

Panel A  
18 features 

Panel B 
26 features 

Multivariate Statistical Analysis Conducted on a 386-Feature Matrix  

Set Total # of 
Samples 

SI 
ccRCC 

SII 
ccRCC 

SIII 
ccRCC 

SIV 
ccRCC Control 

Training 80 10 10 10 10 40 

Validation 14 2 2 2 2 6 

Test 70 44 2 6 12 6 

Total 164 56 14 18 24 52 

Set Total # of 
Samples 

Early Stage ccRCC 
  SI       +       SII 

Late Stage ccRCC 
 SIII       +       SIV 

Training 70 24 11 15 20 

Validation 14 4 3 3 4 

Total 84 42 42 

Test Set 
Stage I ccRCC   

n=28 

Training Set  
94% Specificity  

100% Sensitivity  
97% Accuracy 

Test Set 
100% Specificity 
80% Sensitivity 
81% Accuracy 

AUC 0.89  

Training Set 
93% Accuracy (SI+SII) 

76% Accuracy (SIII+SIV)  
85% Accuracy 

Kidney Cancer Global Incidence 
 Female:Male (1:1.7) 

Male Female 

Feature Matrix:  
386 (Rt_ m/z) pairs 

 386 Features Selected Feature Panel Sample Classification 

Principal Component Analysis 
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Table 1. Sample Distribution in Models: Control vs ccRCC.  

Table 2. Sample Distribution in Models: Early vs Late Stage ccRCC. 
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No significant differences (p>0.05) were obtained 
between ages from Controls and ccRCC Patients in 
Training and Validation Sets. 
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82% 

Accuracy  

Support Vector Machines (SVM) coupled with LASSO Variable Selection Method 
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Panel Features  
Rt_m/z Adduct 

Fold Changea 

Control/ccRCC or 
Early/Late 

p value  Molecular 
Formula Lipid Main Classb 

B 0.62_369.1736 [M-H]- 1.5 <0.02 C47H86NO10P Glycerophosphoserines 

A 0.74_407.2787 [M-H]- 3.1 <0.001 C24H40O5 Bile Acids & Derivates 

A & B 0.74_479.2813 [M-H]- 1.6 / 1.0 <0.00002 / NS  C27H44O5S Secosteroids 

A 0.92_243.1955 [M-H]- 1.7 <0.03 C14H28O3 Fatty Acids & Conjugates 

A 0.94_183.1385 [M-H]- 1.2 <0.04 C25H50O2 Fatty Acids & Conjugates 

B 1.04_197.1542 [M-H]- 1.2 <0.03 C12H22O2 Fatty Acids & Conjugates 

A 1.23_199.1698 [M-H]- 1.4 <0.0006 C12H24O2 Fatty Acids & Conjugates 

B 5.30_864.5743 [M-H2O-H]- 1.1 NS C48H84NO10P Glycerophosphoserines 

A 5.57_766.5408 [M-H]- 1.4 <0.001 C43H78NO8P Glycerophosphocholines 

B 7.12_854.5890 [M-H]- 1.0 NS C47H86NO10P Glycerophosphoserines 

A & B 7.24_381.3720 [M-H]- 1.5 / 1.4 <0.001 / <0.02 C25H50O2 Fatty Acids & Conjugates 

B 7.54_826.5970 [M-H]- 1.1 NS C46H88NO9P Glycerophosphoserines 

B 7.71_722.5110 [M-H]- 1.3 NS C41H74NO7P Glycerophosphoethanolamines 

aFold changes are calculated as the ratio of median peak areas between compared classes. p values were calculated using Mann-Whitney U 
tests. NS: non-significant differences after correction with the Benjamini-Hochberg procedure for multiple comparisons with a FDR of 0.1.  
bAccording to LIPID MAPS Database. 

Table 3. Putative Identification of Discriminant Lipids based on Accurate Mass and Isotopic Pattern.  

Biomarker 
Discovery 

Acknowledgment 

• 15 out of 18 discriminant lipids were significantly decreased in ccRCC serum samples compared to 
controls, in agreement with previous studies.8 

• Since 2 discriminant lipids are common to both panels, 42 lipids would allow early ccRCC detection. 
• Current work involves the identification of the discriminant lipids by tandem MS experiments and 

comparison with chemical standards. 
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