Sciforum

CONICET A Mass Spectrometry-based Lipidomics Study for Early Diagnosis of clear cell Renal Cell Carcinoma

CIBION

Malena Manzi¹, Martín Palazzo^{2,3}, Nicolás Zabalegui¹, María Elena Knott¹, Patricio Yankilevich³, María Isabel Giménez⁴, Lyida I. Puricelli⁵, María Eugenia Monge^{*1}

H

HOSPITAL ITALIANO de Buenos Aires

¹Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, CABA, Argentina. ²Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) CONICET, Instituto Partner de la Sociedad Max Planck, Godoy Cruz 2390, C1425FQD, CABA, Argentina.³ LM2S, Université de Technologié de Troyes 12 rue Marie-Curie, CS42060 Troyes, France. ⁴Departamento de Diagnóstico y Tratamiento, Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, CABA, Argentina.⁵Instituto de Oncología Ángel H. Roffo, Facultad de Medicina, Universidad de Buenos Aires, Av. San Martín 5481, C1417DTB, CABA, Argentina. *maria.monge@cibion.conicet.gov.ar

ccRCC Training Se Control Training Set

ccRCC Test Set

Control Test Set

ΙΒΙΟΒΑ

CONICET

Kidney cancer is fundamentally a metabolic disease¹ and more than 30% of patients, often incidentally diagnosed by imaging procedures, exhibit locally advanced or metastatic renal cell carcinoma (RCC) at the time of diagnosis.^{2, 3} The disease is inherently resistant to chemotherapy⁴ and radiotherapy.⁵ Clear cell RCC (ccRCC) is the most common (75%) lethal subtype, and is considered a glycolytic and lipogenic tumor.^{6,7} Current research has shown that several metabolic alterations are associated with RCC and different potential biomarkers have been identified.⁷⁻⁹ Early diagnosis is needed to reduce the mortality associated to ccRCC, to give more opportunities for early intervention and improved outcome of ccRCC patients. In this context, lipids are candidate molecules to be explored in a non-targeted fashion as potential biomarkers for ccRCC diagnosis by means of lipid profiling experiments.

OBJECTIVES

- Optimize a protocol for extracting and analyzing lipids from human serum samples.
- Profile the lipidome using a discovery-based lipidomics approach via UHPLC-QTOF-MS.
- Compare the serum lipid profiles of ccRCC patients with those from healthy individuals.
- Compare the lipid profiles along disease progression through the analysis of samples from patients with different ccRCC stages (I, II, III, IV).
- ✤ Develop a machine learning method applying Support Vector Machines (SVM) with LASSO to find discriminant feature panels for sample classification.
- Analyze the relative level change of discriminant features between the different classes and ccRCC stages.

Assign identities to the discriminant lipids in order to understand the tumor biology.

Patient Cohort – Retrospective Study

Human Serum Samples (n=112)	Pre-Analytical Factors Experiment	Data Processing Data Processing Classification & Pred	, Data Analysis Biological Interpretation
dividuals ol Stage I Stage I Stage I Stage II Stage II Stage II Stage II Stage II Stage II Stage II Stage II Stage II Stage IV Stage II Stage IV Stage II Stage IV Stage IV Stage II Stage IV Stage IV Stag	$ \begin{array}{c} \mbox{Experimental}\\ \mbox{Design} & \mbox{Sample}\\ \mbox{Design} & \mbox{Sample}\\ \mbox{Collection} & \mbox{BPMSO}\\ \mbox{Serum}\\ \mbox{Biobank} & \mbox{Protein Precipitation}\\ \mbox{-Protein Precipitation}\\ \mbox{-Centrifugation}\\ \mbox{-Lopphilization}\\ \mbox{-Reconstitution} & \mbox{-Reconstitution}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Protein Precipitation}\\ \mbox{-Lopphilization}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ \mbox{-Reconstitution} & \mbox{-Protein Precipitation}\\ -Protein Protein Prote$	 Metabolic Feature Extraction Rt_m/z; peak area Import Data into Progenesis Qt Retention time alignment Peak Picking and Integration Adduct Deconvolution Solvent Correction Prevalence Filter Data curation Metabolic Feature Matrix: 326 (Rt_m/z) pairs 	 h by s alidated c LASSO d andem MS experiments batabase search Validation with chemical standards <i>i</i> Mathematical standards
	RESULTS		
Multivariate Statistical Analysis Conducted on a Support Vector Machines (SVM) coupled with LASSO Variab	386-Feature Matrix ole Selection Method	Principal Component Analys	is SVM Model
nple Distribution in Models: Control vs ccRCC.	ning Set Control vs ccRCC	386 Features Selected Feat	cure Panel Sample Classification

Experimental Design and Analytical Methods

Training	80	10	10	10	10	40	
Validation	14	2	2	2	2	6	(
Test	70	44	2	6	12	6	
Total	164	56	14	18	24	52	

ccRCC

ccRCC

SIV

ccRCC

Contro

97% Accuracy 18 features **Test Set** 100% Specificity 80% Sensitivity ccRCC Contro 81% Accuracy AUC 0.89 SI+SII vs SIII+SIV **Training Set** 93% Accuracy (SI+SII) Panel B 76% Accuracy (SIII+SIV) 26 features 85% Accuracy **Test Set** SI+SII 82% III+SI\ Accuracy Early Stage Late Stage

Panel A

Table 2. Sample Distribution in Models: Early vs Late Stage ccRCC.

Table 1. Sample Distribution in Models: Control vs ccRCC.

ccRCC

Total # of

Samples

Se	t To	otal # of Samples	Early St	age ccRCC + SII	Late S	tage +	ccRCC SIV		
Trainir	ng	70	24	11	15		20		lest Set Stage I ccRCC
Valida	tion	14	4	3	3		4)	n=28
Total		84		42		42			

-25 -20 -15 -10 -5 0 5 10 15 20 25

PC1 (20%)

* *

ControlccRCC

ccRC

Fold change: 1.0

P < 0.02

Contro CCRCC Age range No significant differences (*p*>0.05) were obtained between ages from Controls and ccRCC Patients in

Training and Validation Sets.

	Panel	Features R _t _m/z	Adduct	Fold Change ^a Control/ccRCC or Early/Late	p value	Molecular Formula	Lip
--	-------	---------------------------------	--------	--	---------	----------------------	-----

Fallel	R _t _m/z	Auduct	Early/Late		Formula	
В	0.62_369.1736	[M-H]⁻	1.5	<0.02	$C_{47}H_{86}NO_{10}P$	Glycerophosphoserines
А	0.74_407.2787	[M-H]⁻	3.1	<0.001	$C_{24}H_{40}O_5$	Bile Acids & Derivates
A & B	0.74_479.2813	[M-H]⁻	1.6 / 1.0	<0.00002 / NS	$C_{27}H_{44}O_5S$	Secosteroids
А	0.92_243.1955	[M-H]⁻	1.7	<0.03	$C_{14}H_{28}O_{3}$	Fatty Acids & Conjugates
А	0.94_183.1385	[M-H]⁻	1.2	<0.04	$C_{25}H_{50}O_{2}$	Fatty Acids & Conjugates
В	1.04_197.1542	[M-H]⁻	1.2	<0.03	$C_{12}H_{22}O_{2}$	Fatty Acids & Conjugates
А	1.23_199.1698	[M-H]⁻	1.4	<0.0006	$C_{12}H_{24}O_{2}$	Fatty Acids & Conjugates
В	5.30_864.5743	[M-H ₂ O-H] ⁻	1.1	NS	$C_{48}H_{84}NO_{10}P$	Glycerophosphoserines
А	5.57_766.5408	[M-H]⁻	1.4	<0.001	C ₄₃ H ₇₈ NO ₈ P	Glycerophosphocholines
В	7.12_854.5890	[M-H]⁻	1.0	NS	$C_{47}H_{86}NO_{10}P$	Glycerophosphoserines
A & B	7.24_381.3720	[M-H]⁻	1.5 / 1.4	<0.001 / <0.02	$C_{25}H_{50}O_{2}$	Fatty Acids & Conjugates
В	7.54_826.5970	[M-H]⁻	1.1	NS	$C_{46}H_{88}NO_9P$	Glycerophosphoserines
В	7.71_722.5110	[M-H]⁻	1.3	NS	$C_{41}H_{74}NO_7P$	Glycerophosphoethanolamines

Table 3. Putative Identification of Discriminant Lipids based on Accurate Mass and Isotopic Pattern.

Training Set

94% Specificity

100% Sensitivity

^aFold changes are calculated as the ratio of median peak areas between compared classes. p values were calculated using Mann-Whitney U tests. NS: non-significant differences after correction with the Benjamini-Hochberg procedure for multiple comparisons with a FDR of 0.1. ^bAccording to LIPID MAPS Database.

ccRCC

Control

Conclusions & Perspectives

- Lipid profiling coupled with SVM-LASSO multivariate analysis provided 2 discriminant feature panels for serum sample classification and prediction: i) 18 features allowed discriminating controls from ccRCC patients with 81% accuracy in an independent test set, and ii) 26 features allowed classifying stage I from stage III and IV ccRCC patients in an independent test set with 82% accuracy.
- 15 out of 18 discriminant lipids were significantly decreased in ccRCC serum samples compared to controls, in agreement with previous studies.⁸

SI+SII

- Since 2 discriminant lipids are common to both panels, 42 lipids would allow early ccRCC detection.
- Current work involves the identification of the discriminant lipids by tandem MS experiments and comparison with chemical standards.

Acknowledgment	References				
We acknowledge CONICET, ANPCYT, and MINCYT for providing the funding, and the BPMSO Biobank from Instituto de Oncología A. H. Roffo and Hospital Italiano de Buenos Aires for providing the samples.	 (1) Linehan, WM. et al Nat. Rev. Urol. 2010, 7, 277. (2) Hu, B. et al. Urol. Clin. North Am. 2012, 39, 233. (3) Graves, A. et al. Immunotargets Ther. 2013, 2, 73. (4) Diamond, E. et al. Crit. Rev. Oncol. Hematol. 2015, 96, 518. (5) De Meerleer, G. et al. Lancet Oncol. 2014, 15, e170. 	 (6) Hsieh, J.J. <i>et al. Nature Reviews Disease Primers</i> 2017, <i>3</i>, 17009. (7) Hakimi, A.A. <i>et al. Nat. Genet.</i> 2013, <i>45</i>, 849. (8) Lin, L. <i>et al. J. Proteome Res.</i> 2011, <i>10</i>, 1396. (9) Knott, M.E.; Manzi, M. <i>et al. J. Proteome Res.</i> 2018, <i>17</i>, 3877. 			

3rd International Electronic Conference on Metabolomics 15-30 November 2018

sponsors:

