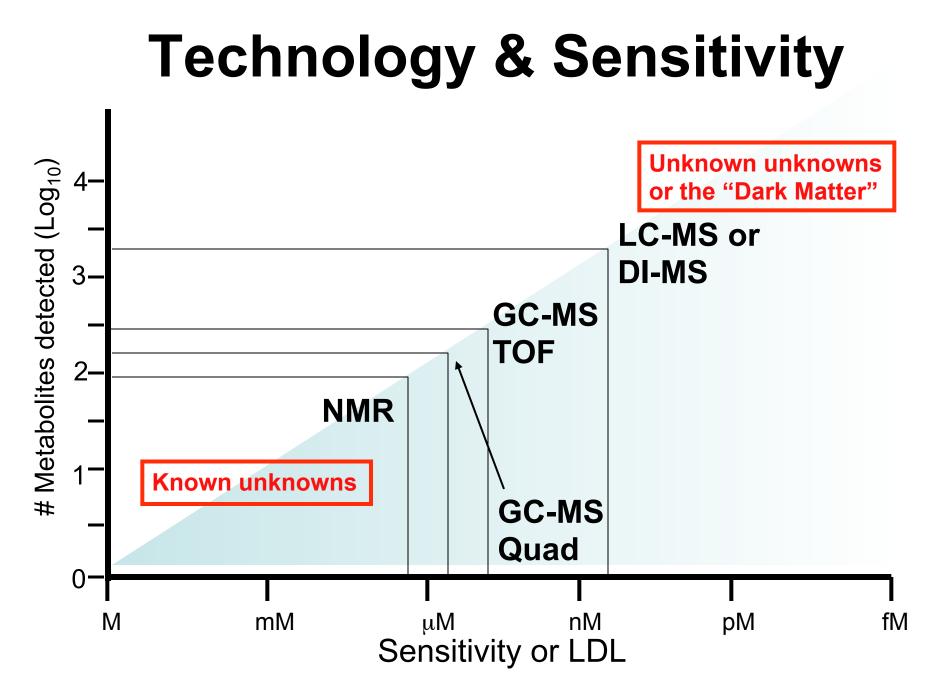
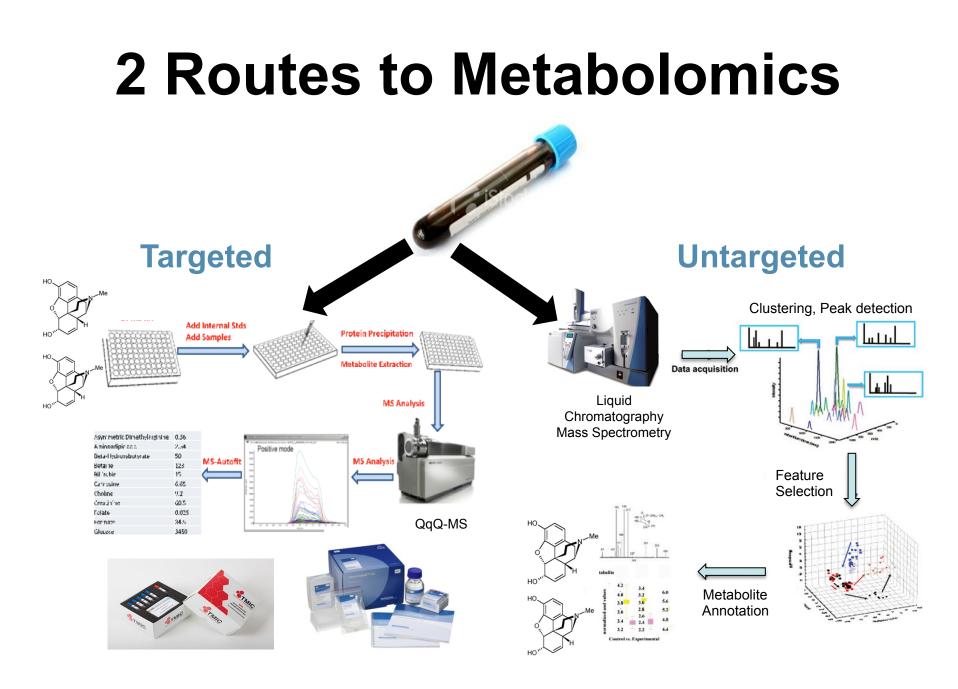
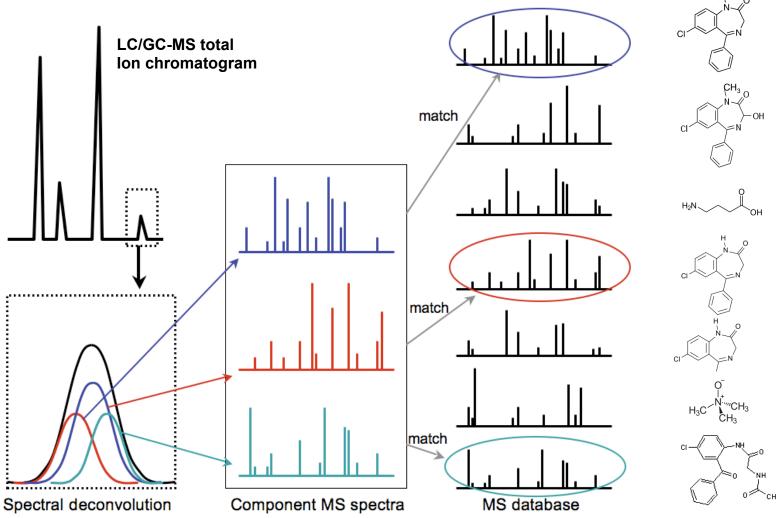
Computational Tools for the Identification of Unknowns

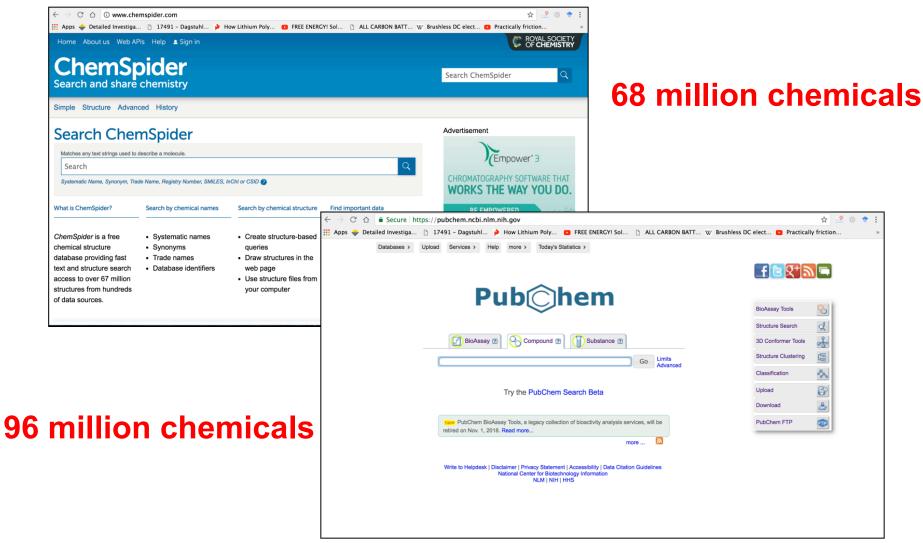

David Wishart, University of Alberta 3rd International Electronic Conference on Metabolomics Nov. 15-30, 2018

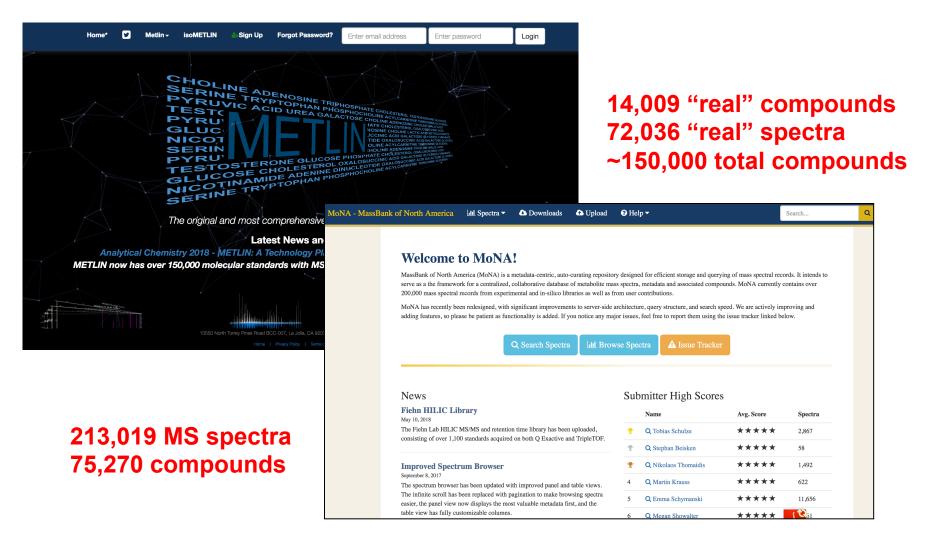

What We Don't Know

 "...there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – the ones we don't know we don't know."



Donald Rumsfeld, US Secretary of Defense - Nov. 2001


Untargeted MS Compound Identification


Levels of Metabolite ID for Untargeted Metabolomics

- 4 levels of metabolite identification
- Level 1 Positively identified compounds
 - Confirmed by MS/MS match and RT match to an actual/authentic standard
- Level 2 Putatively identified compounds
 - Match to EI-MS + RT or MS/MS + RT from a reference database
- Level 3 Compounds putatively identified via molecular formula or m/z matching
 - Match to high resolution m/z and nothing else
- Level 4 Unknown compounds

Compound Identification (Formula Matching – Level 3 ID)

Compound Identification (Spectral Matching – Level 2 ID)

Other Resources for MS/MS Spectral Matching

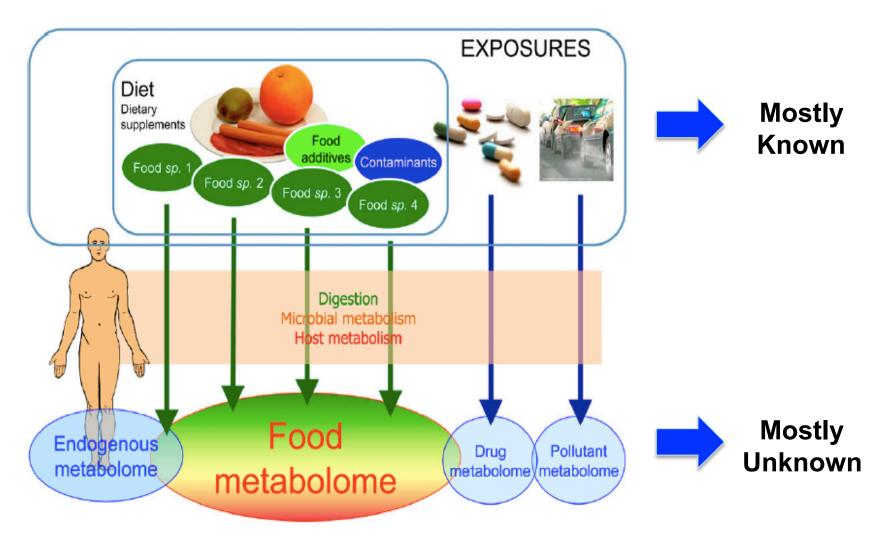
- HMDB 302,219 spectra, 114,100 cmpds
- mzCloud 191,722 spectra, 8304 cmpds
- NIST17 MS/MS 652,475 spectra, 14,351 cmpds
- MassBank 28,185 spectra, 11,500 cmpds
- Wiley LC-MSⁿ >10,000 spectra, 4500 poisons
- ReSpect 9017 spectra, 3595 cmpds
- **GNPS** 221,000 spectra, 18,163 cmpds

How Well Do We Do?

- Untargeted LC-MS of human biofluids 100-250 compounds positively ID'd (level 2) out of 10,000+ features (1%), 700-1000 tentatively ID'd (level 3) out of 10,000+ features (8%)
- Untargeted LC-MS of river water 649 compounds identified (level 1 or 2) out of 8535 features (8%) (Schymanski et al. Anal Bioanal Chem (2015) 407:6237–6255)

Overall we are doing pretty badly

Why Are We Doing So Badly?


- 32,000,000,000 chemical formulae (<2000 Da)
- 2,400,000,000 chemically feasible formulae
- 96,500,000 chemicals in PubChem
- 1,500,000 LC/GC-MS spectra collected on ~15 different platforms
- 80,000 chemicals with EI-MS spectra
- ~20,000 chemicals with high resolution MS spectra
- ~1500 chemicals that are biologically relevant

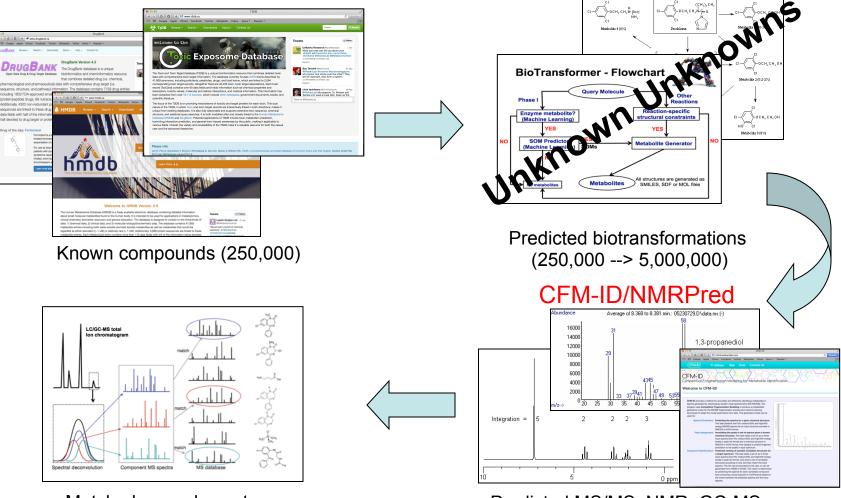
Why Are We Doing So Badly?

- Using larger databases (PubChem, ChemSpider) and m/z matching is leading to many, many false positives
- <0.2% of compounds in PubChem or ChemSpider have ever left the laboratory or are likely to be found in humans or in the environment (Bigger isn't better)
- Only 1500 "meaningful" chemicals are routinely available from vendors (Synthetic chemistry is hard)
- Enormous resources going to collect lots of MS spectra on a tiny number of chemicals (Measuring the same thing over doesn't make the problem go away)
- Most of the unknowns are not in PubChem or Chemspider, or anywhere else (Where are they?)

What Are These Unknowns?

What To Do?

- Obtain or synthesize all commonly available xenobiotics (HPVs, drugs, pollutants, foods, etc.), prepare or synthesize their metabolites and collect their NMR, LC-MS and GC-MS spectra COST: 5 million cmpds X \$1000/cmpd = \$5 billion
- OR
- Do this entire exercise computationally
 COST 5,000,000 cmpds X \$0.10/cmpd = \$500,000


In Silico Metabolomics

- An emerging concept to facilitate metabolite ID
 of unknown unknowns
- Realization that all metabolites will never be synthesized or isolated and most will never have reference MS/MS or NMR spectra collected
- Based on *in silico* prediction of biologically feasible metabolites
- Based on *in silico* prediction of observables (RI, RT, NMR spectra, IR, CCS, MW, MS/MS spectra)

In Silico Metabolomics

HMDB/DrugBank/T3DB

BioTransformer

Match observed spectra to predicted spectra to ID compounds

Predicted MS/MS, NMR, GC-MS spectra of knowns + biotransformed

What Is Known?

UofA Metabolomics Databases

www.hmdb.ca

The Construction services is subscript in a manage cause of material and an income increases indexed by converting only only of a and a strategy than a disease in which is indexed in a building partice, models as strated income of the indexed particle on any distance TVT and indexed in the State income of any operation of State and a strategy of the models is that the strategy of the models is at the strategy of the models in the strategy of the strategy of the models is at the strategy of the models in the strategy of the models is at the strategy of the models in the strategy of the models is a strategy of the strategy of the models in the strategy of the strategy of the models is a strategy of the strategy

User may seen though the (2020) maging and upply of attractionage that the line. The single test pays places in generic places of the total of sources of the total of tot

www.ecmdb.ca

www.drugbank.ca

www.ymdb.ca

www.phenol-explorer.eu

www.cowmetdb.ca

www.serummetabolome.ca

www.tSub.ca

www.urinemetabolome.ca

<complex-block><complex-block>

www.foodb.ca

The New Human Metabolome Database (HMDB)

•

●	www.hmdb.ca	Hun	nan Metabolome Databas			C Reader
		witter Wikipedia Yahoo N	lews * Popular *			÷
💧 HMDB 👘	Browse - Searc	h - Downloads Ab	out + Contact Us	Se	earch metab	olites 🗘 🔍 Search
			vise Metabolites >>			
The Human	nd Metabolome Data	b	Learn More	>>		
•	000	www.hmdb.ca/metabolite		Database: Browsing met	abolites	¢ Reader
	🗋 🎹 Google Apple	iCloud Facebook Twitter	Wikipedia Yahoo News	Popular T		+
The Human Meta) HMDB	Browse - Search -	Downloads About	 Contact Us 	Search Formula	metabolites 🗘 🔍 Search
about small mole clinical chemistry data: 1) chemical	HMDB ID O CAS Number	Name		Structure	Average Mass Mono Mass	Biofluid Location
metabolite entrier regarded as eithe metabolite entrier	HMD800001 332-80-9	1-Methylhistidine		Y,	C ₇ H ₁₁ N ₃ O ₂ 169.1811 169.085126611	Blood Cerebrospinal Fluid (CSF) Saliva Urine
	HMDB00002 109-76-2	1,3-Diaminopropane		H,N NH;	C ₃ H ₁₀ N ₂ 74.1249 74.08439833	Blood Urine
	HMDB00005 600-18-0	2-Ketobutyric acid		CH, OH	C ₄ H ₆ O ₃ 102.0886 102.031694058	Blood Cerebrospinal Fluid (CSF) Saliva Urine
	HMDB00008 600-15-7	2-Hydroxybutyric acid		H0 H1C	C ₄ H ₈ O ₃ 104.1045 104.047344122	Blood Cerebrospinal Fluid (CSF) Salilva Urine

http://www.hmdb.ca

- HMDB 4.0 has 114,100 "quantified", "detected", "expected" and "predicted" metabolites (3X more than version 3.0)
- HMDB 3.0 had 442 biological pathways, HMDB 4.1 has 48,627 (100X more than version 3.0)
 - New version has >500,000 MS/MS & GC-MS spectra, 3900 NMR spectra
 - New version has 6800 metabolite-SNP associations, 2500 metabolitedrug associations and 2900 metabolite-age/gender associations
 - 78,000 new lipids/peptides to be added in late 2018 – total = 192,000

The New Drug Database (DrugBank v. 5.0)

> C 🏠 🗎 Secure ht	tps://www.drugbank.ca	👂 How Lithium Pol	ly 🖸 FREE E	NERGY! Sol	ALL CARBON BATT.	. W Brushless DC	elect 🗈 Prac	tically friction	☆ 🔮 0 1	* : »
RUGBANK			Browse 🔻	Search 🕶	Downloads	About 🔻	Help 🔻	Blog	Contact	Us
	WHAT ARE YOU LO									
							\cap			
	Tylenol									
	🚱 Drugs 😛 Ta	rgets 👩 Pati	hways ! I	Indications						
										I
	ANK									
		<u>ع المأمالة</u>	higinfg	rmatics a	nd					<u>ن</u> ۹
The DrugBar	ANK Add Add Add Add Add Add Add Add Add Add					ALL CARBON BATT	W Brushless DC	elect 🖪 Pra	actically friction	
The DrugBar cheminfor	k datahase is → C û ê Secure Ih					ALL CARBON BATT Downloads	W Brushless DC	elect 🖻 Pro Help 🔻	actically friction Blog	
The DrugBar cheminfor with comp	L datahase is → C A = Secure h Apps → Detailed Investiga DRUGBANK	🖰 17491 – Dagstu	uhl 🏓 How Liti	hium Poly 🗈 FRE	E ENERGY! Sol 🗅		About 👻			
The DrugBar cheminfor	k datahase is ⇒ ⊂ ☆ e Secure h Apps ≑ Detailed Investiga	Acetammopm	uhi 🌶 How Liti	hium Poly 🗈 FRE	E ENERGY! Sol 🗅		About 👻	Help 🔻		
The DrugB cheminfor with comp The latest rel 2,533 approv nutraceutica	k datahace is	🖰 17491 – Dagstu	uhi 🄌 How Liti en RD00252)	hium Poly 🗈 FRE	E ENERGY! Sol 🗅		About 👻	Help 🔻		
The DrugBar cheminfor with comp The latest rel 2,533 approv	k datahase is C a Secure h Associated Institution DRUGBANK Name Accession Number	17491 - Dagstu Acetammoph DB00316 (AP	uhi 🄌 How Liti en RD00252)	hium Poly 🗈 FRE	E ENERGY! Sol 🗅		About 👻	Help 🔻		
The DrugBar cheminfor with comp The latest rel 2,533 approv nutraceutica target/enzym	k datahace is C ∩ ■ Secure h Apps → Detailed Investiga DRUGBANK Name Accession Number Type	17491 - Dagstu Actetammopm DB00316 (AP Small Molecu Approved Acetaminoph effects. Its th	en en, also known	hium Poly Browse Browse as paracetamol, ii ts are similar to s	s commonly used		About -	Help 🔻		

- A comprehensive database of drugs, drug actions and drug targets
 2533 small molecule drugs
 - >5700 experimental drugs
 - Detailed ADMET, MOA and pharmacokinetic data
 - >3850 drugs with metabolizing enzyme data
 - >1360 drug metabolites
 - >6000 MS+NMR spectra
 - >5130 unique drug targets
 - 215 data fields/drug
 - Published on Jan. 1, 2018

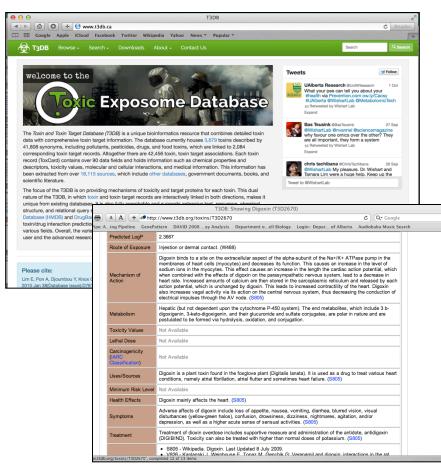
http://www.drugbank.ca

The Food Database (FooDB)

•

•

•


•

www.foodb.ca

- A comprehensive food composition database (more than polyphenols)
- 28,771 compounds
- 718,405 concentration values for 722 raw/processed foods
 - 31,791 references
 - 1435 cmpds with health effects
 - 2692 cmpds w flavour attributes
 - 2000+ reference MS/NMR spectra
 - Structure & text searches
 - >100 data fields/compound
- Publicly released on Jan. 1, 2018, manuscript being prepared

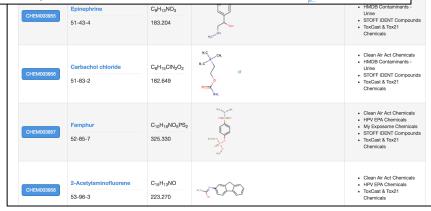
The Toxic Exposome Database (T3DB)

http://www.t3db.ca

- Comprehensive data on toxic compounds (drugs, pesticides, herbicides, endocrine disruptors, drugs, solvents, carcinogens, etc.)
- Detailed mechanisms, binding constants, target info, lots of ToxCast data
- >3600 toxic compounds
- >1900 reference spectra
- ~2100 toxic targets
- Supports sequence, spectral, structure, text searches as well as compound browsing
- Full data downloads

ContaminantDB

Welcome to ContaminantDB Version 1.0

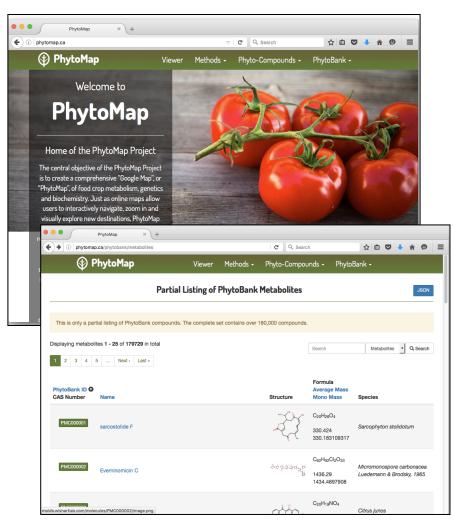

University of British Columbia junior faculty

@BCCHresearch and Dept of Biochemistry

member in the area of metabolomics at

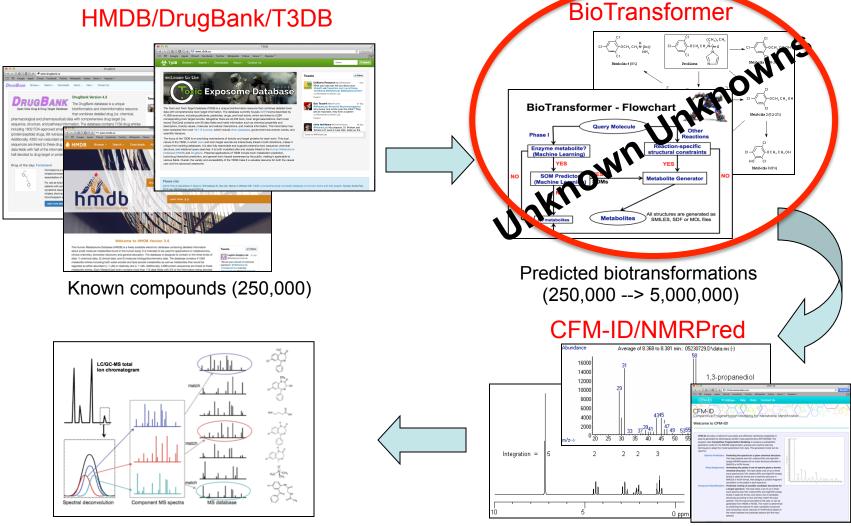
Come join us! ur

The Contaminant/DB is a unique bioinformatics resource that combines detailed contaminant data from different online references and databases on contaminants. The database currently houses 54.249 compounds. It is both modelide after and closely linked to the Human Metabolome Database (HMDB) and DrugBank. The databases and sources used to gather contaminant data includes IARC Carcinogenes Group 1; 2A, 2B, 3 and 4, DrugBank. The databases and sources used to gather contaminant data Chemicals, ToXast and ToX2 Chemicals, EPA High Production Volume Chemicals, SOHA Hazardous Chemicals, Clean Air Act Chemicals, TADB Toxins, ECHA Substances of High Concern, DEA Chemicals, EPA Endocrine Screening Chemicals, EAFUS Chemicals, TADB Toxins, ECHA Substances of High Concern, DEA Chemicals, EPA Endocrine Screening Chemicals, EAFUS Chemicals, TADB Toxins, ECHA Substances of High Concern, DEA Chemicals, EPA Endocrine Screening Chemicals, EAFUS Chemicals, TADB Toxins, ECHA Substances of High Concern, DEA Chemicals, Clean Air Act Chemicals, TADB Toxins, ECHA Substances of High Concern, DEA Chemicals, Clean Tox2 Chemicals, EAFUS Chemicals, TADB Toxins, ECHA Substances of High Concern, DEA Chemicals, Clean Tox2 Chemicals, EAFUS Chemicals, TADB Toxins, ECHA Substances of High Concern, DEA Chemicals, TAB Tox3 Chemical


www.contaminantdb.ca

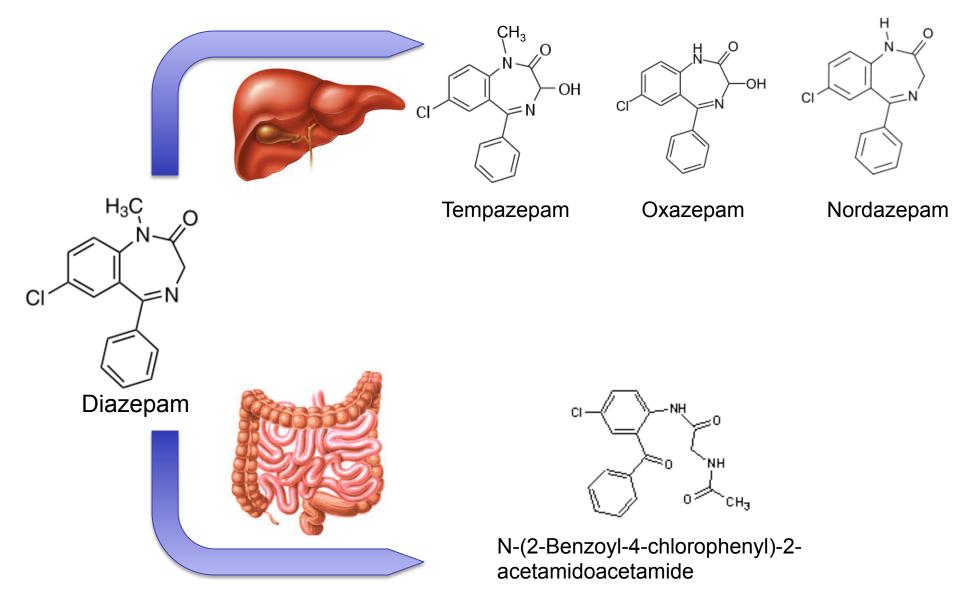
- Data on 54,249 probable or known chemical contaminants
- Expected to grow to 80,000+ by Sept. 2018
- Exp. MS data for 5000+ cmpds
- Pred. 54,000 EI-MS spectra, 150,000 ESI-MS/MS spectra
- Source or role information for most compounds
- >40% of the compounds in ContaminantDB are not found in PubChem or ChemSpider
- Supports spectral, structure and text searches as well as compound browsing

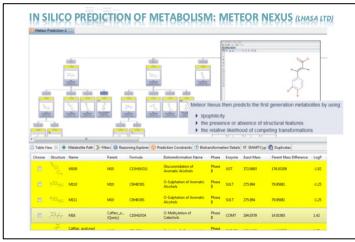
PhytoBank



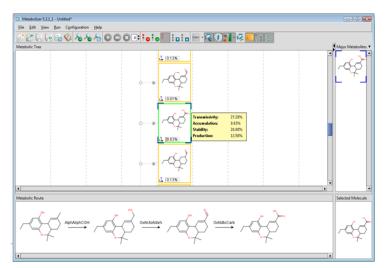
- 179,729 plant-derived compounds from more than 23,700 plant species including >8,318 food/ crop plants and >2,439 medicinal plants
- >33% of the compounds in PhytoBank are <u>not</u> found in PubChem or ChemSpider
- Will offer same resources as HMDB, DrugBank, etc.

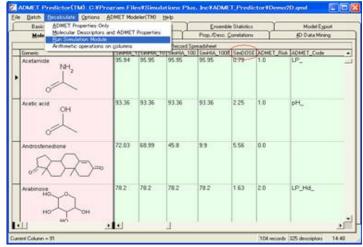
What Can We Predict?

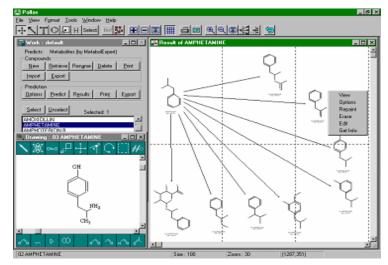

In Silico Metabolomics


Match observed spectra to predicted spectra to ID compounds

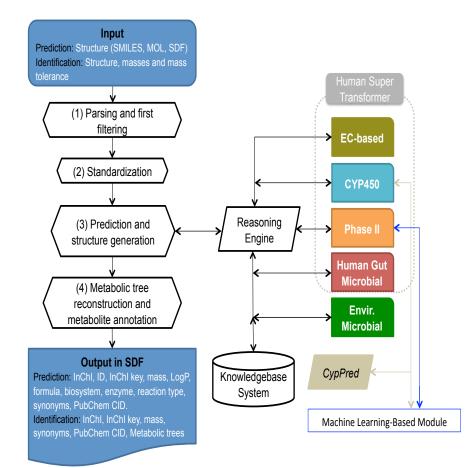
Predicted MS/MS, NMR, GC-MS Spectra of knowns + biotransformed

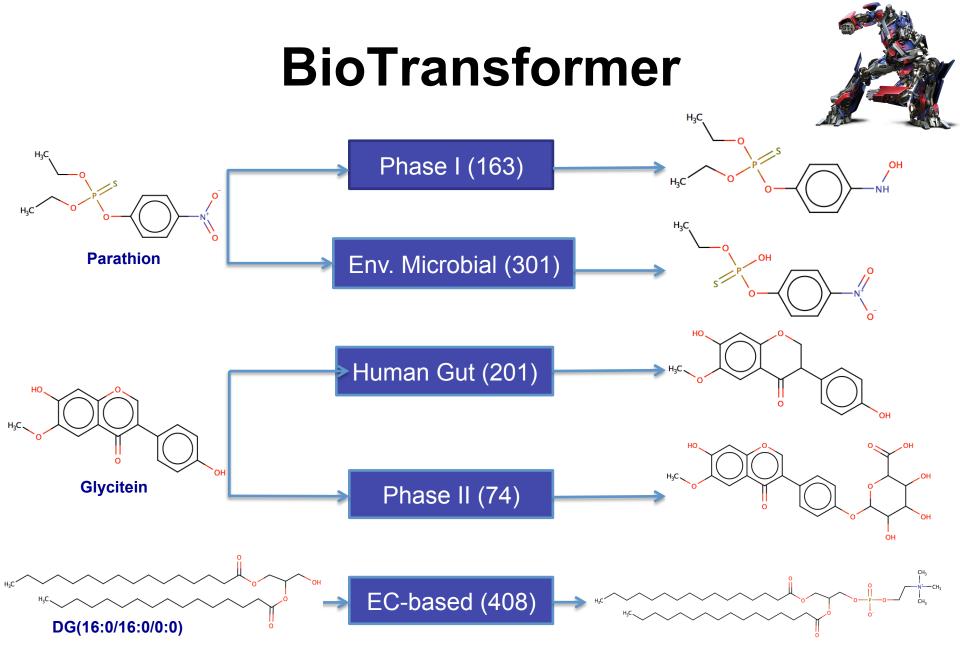

Examples of Biotransformation


Commercial Tools

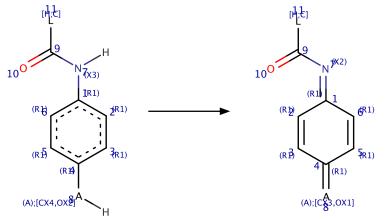

Meteor-Nexus

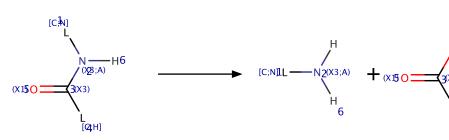
Metabolizer


ADMET Predictor


MetabolExpert

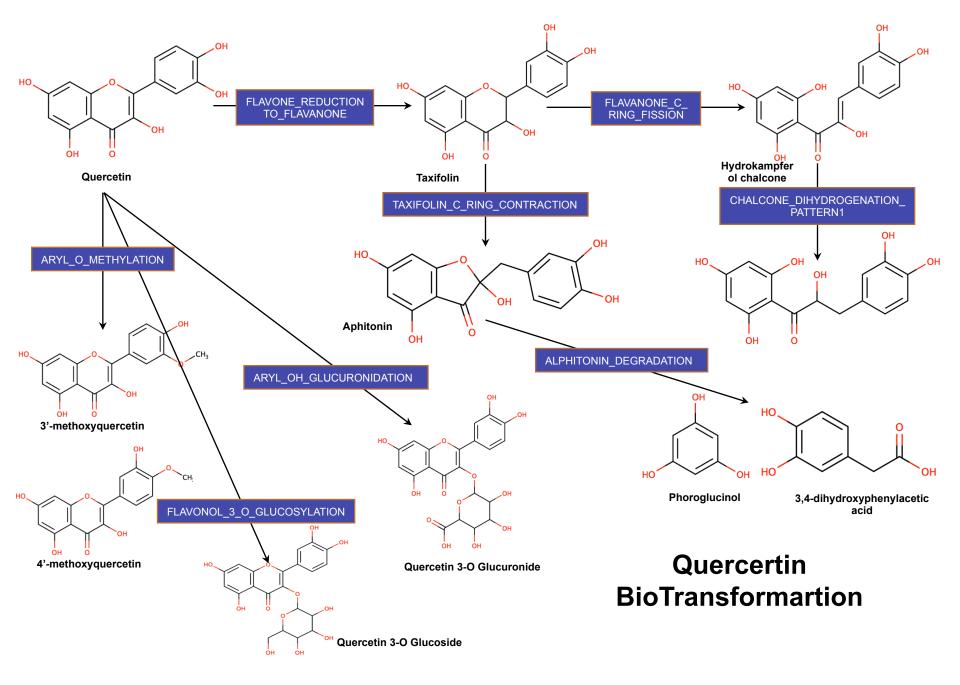
BioTransformer (Free)


- A comprehensive tool for predicting metabolite structures that have been biotransformed through phase I, phase II, microbial, promiscuous and environmental processes
- Uses a large knowledgebase and a large set of heuristic (and machine-learned) biotransformation rules
- Performs much better than wellknown commercial tools
- Publicly released, manuscript submitted



(Q:H)

BioTransformer



Oxidation of p-substituted anilides (BTMR1018) Human (Liver) Phase I Metabolism

Hydrolysis of secondary amide (BTMR0704) Environmental microbial (EAWAG-BBD)

	No. of enzymes	No. of biotransformation rules	No. of enzyme-rule associations	No. of covered biosystems
EC-based	285	408	459	2
СҮР450	9	163	712	1
Human gut micro.	53	201	204	2
Phase II	9	74	81	2
Envir. microbial	1	301	301	1

Overall, 1,240 biotransformation rules were manually designed and tested. Overall, 2,150 reaction preference rules were implemented.

BioTransformer Evaluation

	BioTransformer	Meteor
True Positives	188	153
False Positives	198	281
False Negatives	35	70
Total No. of Predictions	386	431
Precision	0.49	0.35
Recall	0.84	0.69
# of reported metabolites	223	

- 1. Test set: 40 compounds (incl. drugs and pesticides)
- 2. Metabolism data was retrieved from >60 references
- 3. BioTransformer (v. 1.0.4) and Meteor Nexus (v. 3.0.1) were used for 1- step prediction of **human metabolism**

BioTransformer Evaluation

1.Test set: 60 compounds (incl. drugs, pesticides, food compounds, steroids)

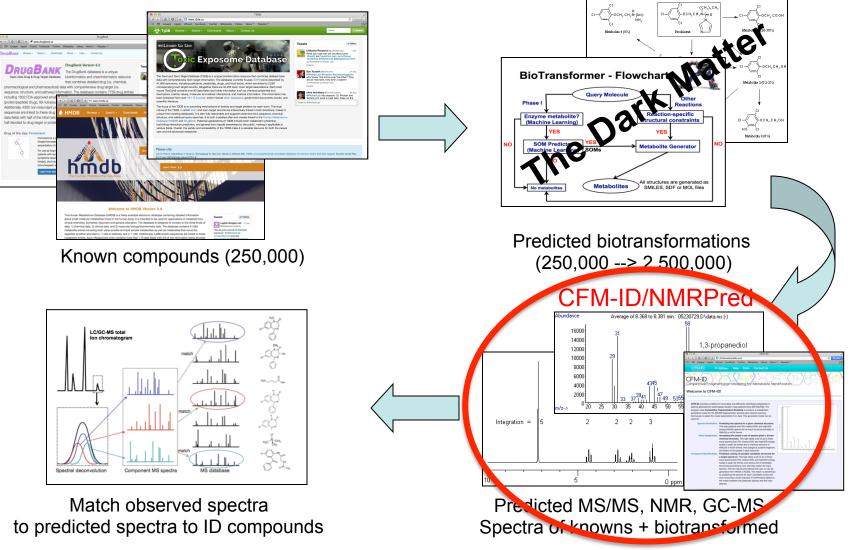
2.Metabolism data was retrieved from 60+ references 3.BioTransformer (v. 1.0.4) and ADMET Predictor (v. 8.5.11) were used for 1- step prediction of **human CYP450 metabolism**

1.Test set: 20 compounds (incl. endogenous metabolites, phytochemicals, and other xenobiotics)
2.Metabolism data was retrieved from >50 references
3.BioTransformer (v. 1.0.4) was used for 1-step prediction of human and gut microbial metabolism

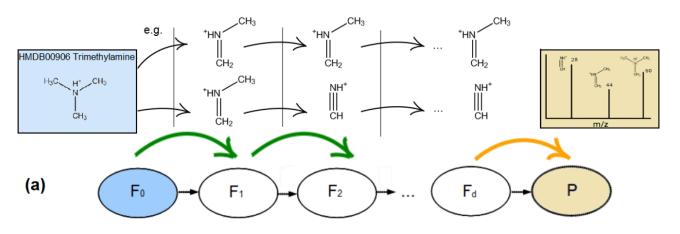
	BioTransformer	ADMET Predictor
True Positives	162	110
False Positives	188	122
False Negatives	18	70
Total No. Predictions	350	232
Precision	0.46	0.47
Recall	0.9	0.61
No. of Reported Metabolites	180	

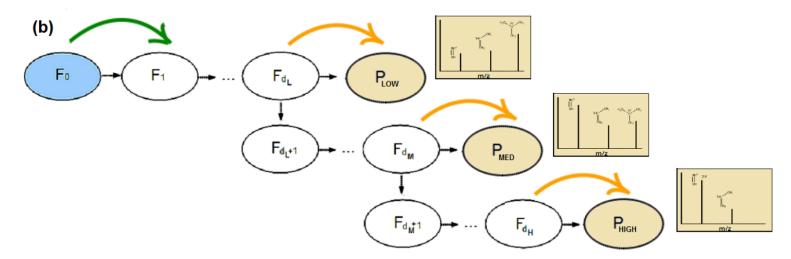
BioTransformer				
True Positives	111			
False Positives	49			
False Negatives	17			
Total No. Predictions	160			
Precision	0.69			
Recall	0.87			
No. of Reported Metabolites	128			

BioTransformer Updates


- Added/updated:
 - Available as a web server and a program, added metabolite ID option via m/z or molecular formula
- Number of compounds expected
 - 1-step reactions generate 5X as many compounds while 2step reactions generate 20X as many compounds
 - Expect HMDB+BioTransformer will generate 2.2 million new compounds, all DBs+BioTransformer = 5 million cpds
- Benchmark for computing time
 - 1,000 FooDB compounds generate 5,071 human and gut microbial metabolites in 1 step (all enzymes)
 - 1h 29 mins (~5.35 s/compound per processor)

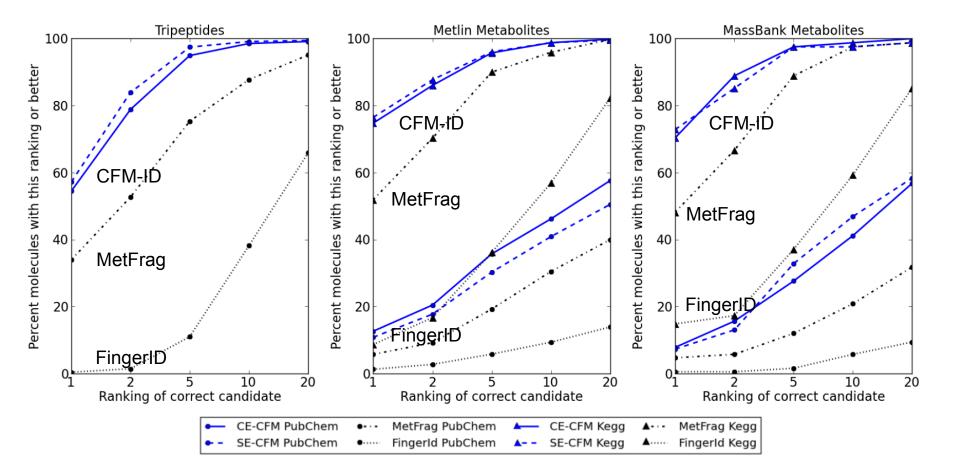
If you want compounds processed now, send your queries to Yannick Djoumbou Feunang --- djoumbou@ualberta.ca


In Silico Metabolomics


HMDB/DrugBank/T3DB

BioTransformer

Competitive Fragment Modeling (CFM-ID)



F. Allen et al. Metabolomics 11: 98-110 (2015).

CFM-ID

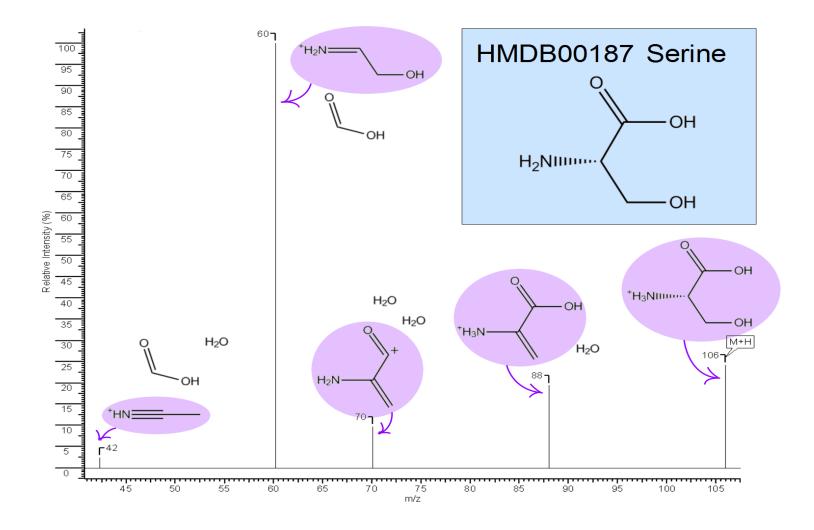
- Uses a large training set of high resolution MS/MS data of known compounds at low (10 eV) medium (20 eV) and high (40 eV) collision energies
- Employs an initially naïve chemical fragmenter that generates potential fragments and the coresponding MS/MS spectra
- The fragmenter slowly learns from its training data (via an HMM)
- The more training data, the better the overall performance

CFM-ID Performance

F. Allen et al. Metabolomics 11: 98-110 (2015).

Performance

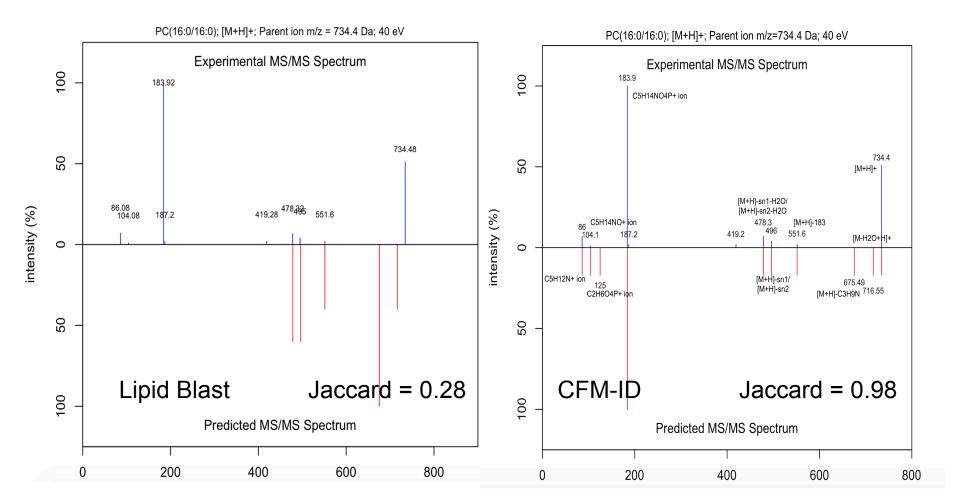
- Significant performance improvement in CFM-ID and all other fragment or structure predictors if the database being searched is smaller or more targeted
- Significant improvement if multiple collision energies (10, 20, 40 eV) are used rather than a single collision energy
- 80% correct for DB ~30,000 cmpds
- 50% correct for DB ~1,000,000 cmpds
- 20% correct for DB ~50,000,000 cmpds


The CFM-ID Server

http://cfmid.wishartlab.com

- A web server that predicts MS/MS spectra, annotates input MS/MS spectra and permits compound identification from input MS/MS spectra
- Matches predicted MS/MS spectra (from HMDB or KEGG) to input MS/MS spectra
- 1st and 2nd in the 2014 CASMI competition, used by winners of 2016 CASMI competition

CFM-ID Example Output


CFM-ID Updates

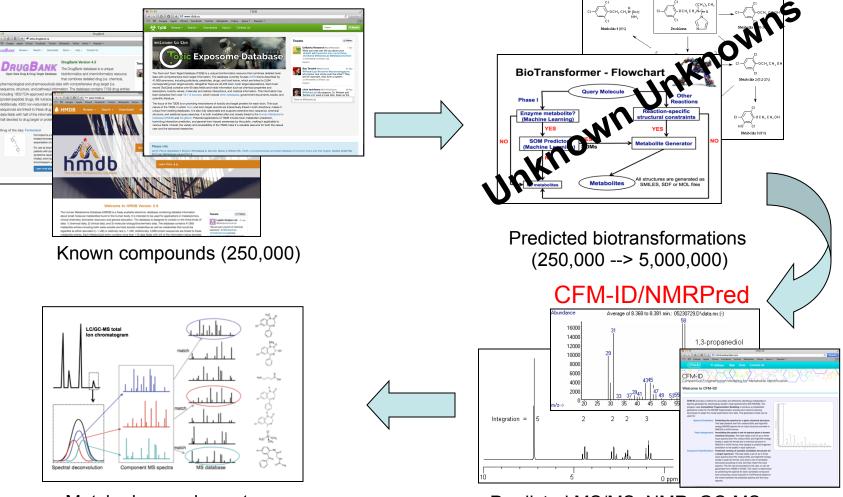
- Version 3.0 completed (to be released in Dec):
 - Significantly improved (5X) performance with respect to lipid MS/MS spectral prediction
 - Supports matches to known MS/MS spectra for better compound ID, improved scoring based on citations

• Version 4.0 in progress (to be finished by 2019)

- Much larger training data set (4X larger) covering QTOF and OrbiTrap MS/MS spectra at multiple collision energies
- Improved generative function, improved chemical and bond descriptors boosts spectral prediction performance by 30-40% over previous CFM-ID version
- Combined improvements should increase overall performance by at least 50% (still not perfect)

CFM-ID 3.0 for Predicting 70,000 Lipid Spectra in the HMDB

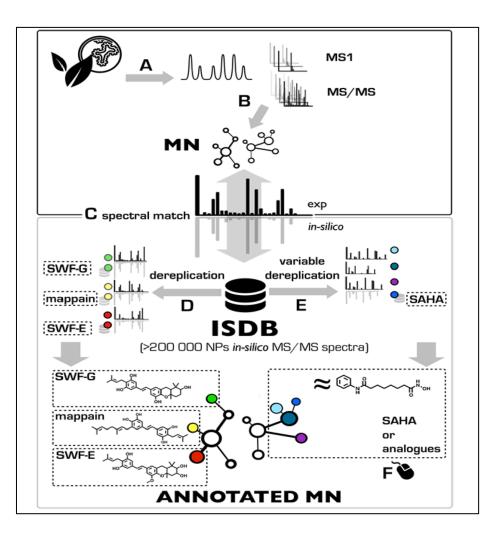
"Observables" Prediction

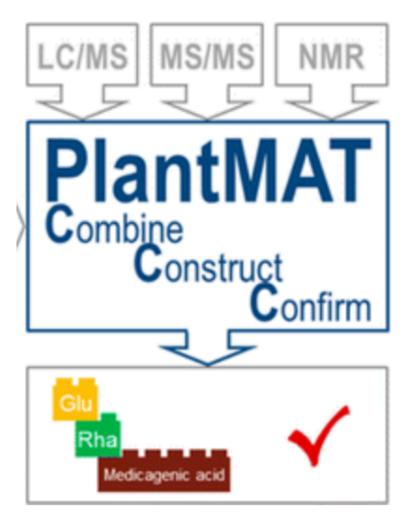

- MS/MS spectral prediction alone will not be sufficient to ID all unknown compounds
- Other observables need to be included for confirmation such as RT (retention time), RI (retention index), CCS (collisional cross section), and gas phase IR or IR ion spectra

Martens et al., *J. Inherit Metabol. Dis.* 2018 41(3):367-377

In Silico Metabolomics

HMDB/DrugBank/T3DB


BioTransformer


Match observed spectra to predicted spectra to ID compounds

Predicted MS/MS, NMR, GC-MS Spectra of knowns + biotransformed

Who Is Doing This?

PM Allard et al. *Anal. Chem.* 2016 88(6) 3317-3323

F Qiu et al. *Anal. Chem.* 2016 88(23) 11373-11383

Conclusions

- Compound identification of unknown compounds by MS/MS analysis is hard
- We have insufficient MS/MS and compound resources now and the foreseeable future
- In silico methods offer a possible solution to the problem of inadequate spectral libraries and inadequate collections of compounds
- Predicted compound libraries and and predicted MS/MS spectra are still imperfect, but they are getting better every year
- These *in silico* methods are already being used by several groups in natural product analysis

Thanks To...

- Yannick Djoumbou Feunang
- Ana Marcu
- AnChi Guo
- Kevin Liang
- Rosa Vazquez-Fresno
- Tanvir Sajed
- Daniel Johnson
- Carin Li
- Naama Karu
- Zinat Sayeeda
- Elvis Lo
- Nazanin Assempour
- Augustin Scalbert

- Sandeep Singhal
- David Arndt
- Yongjie Liang
- Hasan Badran
- Jason Grant
- Arnau Serra-Cayuela
- Yifeng Liu
- Rupasri Mandal
- Vaness Neveu
- Allison Pon
- Craig Knox
- Mike Wilson
- Claudine Manach

THE METABOLOMICS

