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Abstract.   

Ubiquitin/Proteasome System (UPS) is a highly 

regulated mechanism of intracellular protein 

degradation and turnover. Through the 

concerted actions of a series of enzymes, 

proteins are marked for proteasomal 

degradation by being linked to the polypeptide 

co-factor, ubiquitin. The UPS participates in a 

wide array of biological functions such as 

antigen presentation, regulation of gene 

transcription and the cell cycle, and activation 

of NF-κB. Some researchers have applied QSAR 

method and machine learning in the study of 

proteasome inhibition (EC50(µmol/L)), such as: 

the analysis of proteasome inhibition prediction, 

in the prediction of multi-target inhibitors of 

UPP and in the prediction of protein contact 

map. Following this idea, we applied the new 

tool for obtaining molecular descriptor for 

modeling of proteasome Inhibition EC50 

(µmol/L), in which has used this novel molecular 

descriptors (MDs) and different classification 

algorithms for these quantitative structure-

activity relationship (QSAR) studies. In the 
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present research, we use the Atomic Weighted 

Vector (AWV) as attributes with the objective to 

develop the QSAR modeling of this datasets and 

also compare a set of different machine learning 

(ML) techniques to solve this problem, such as: 

Linear Regression (LR), Multiple linear 

regression (MLR), Decision tree(DT), 

Regression Tree(RT), Random Forest(RF), M5P, 

K-nearest neighbors (IBK or kNN), Multi-Layer 

perceptron (MLP), Best-first search (BF) and 

Genetic Algorithm (GA). The figure shows the 

results of R
2
 of the ML-QSAR using ten- folds 

cross validation for 258 compounds. The results 

indicate that AWVs are very important tool for 

modeling the proteasome inhibitory regardless 

of the ML algorithm used. It can be suggested 

that the MD-AWV are suitable for codifying 

important structural information of the 

molecules and, thus, constitute an interesting 

alternative to building effective models for the 

prediction of the values of EC50 (µmol/L). 
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