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Abstract.   

Metabolism represents highly organized system 

characterized by strong regulations satisfying the 

mass conservation principle. In this work, a new 

simplex-based simulation approach was 

developed to learn scaffold information on 

metabolic processes controlling molecular 

diversity from a wide set of observed chemical 

structures. This approach is based on iterative in 

silico combinations of molecular profiles using 

Scheffé’s mixture design. It was illustrated by 

cycloartane-based saponins of Astragalus genus 

containing one, two or three ramification chains 

with variable relative glycosylation levels. 

Competing and sequential glycosylation 

processes of different carbons were highlighted 

by the machine-learning simplex method. 

Comparisons between this simplex approach and 

other molecular modeling approaches were made 

to highlight advantages and limits of the new one. 
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Introduction 

Molecules represent highly organized systems governed by inter-atomic links and interactions. Beyond 

carbon-carbon links forming the molecular backbone (aglycone or skeleton), chemical substitutions 

represent inter-molecular and inter-atomic processes responsible for multiway structural diversification 

in a wide metabolic system. Such a diversification is strongly governed by mass conservation principle 

under which a whole resource is shared between different component of systems leading to negative and 

positive correlations between elements belonging to different and same regulation ways, respectively. 

To highlight such variation trends with their shape, a new simplex-based machine-learning approach 

was developed and applied on chemical structural system after classifying molecules into different 

groups and decomposing them into different constitutive parts (components) [1]. 

 

Method 

By reference to mass conservation, at inter-molecular scale, the biosynthesis of a specific molecule is 

carried out at the expense of others molecules. At intra-molecular scale, the chemical substitutions 

represent a limited resource for which a set of carbons (constituting a molecule) could enter in 

competition. Such inter- and intra- molecular dependences in a mixture system are governed by simplex 

rule: in a simplex space with q-1 dimension, q components (q separated groups) vary the one relatively 

to the other under unit sum constraint representing limited resource in the whole system (Fig.1). 

In this work, molecular clusters consisted of three desmosylation levels making q=3 constitutive groups 

of the simplex system. These molecular clusters were composed by 72 Astragalus saponins based on 

cycloartane with aliphatic lateral chain and characterized by three desmosylation levels representing a 

control factor with three target modalities (Fig.1a-c) and each molecule in these q groups is characterized 

by an individual profile of p additive variables with relative values; these additive variables are the 

relative glycosylation levels of carbons in the molecule. So, in our case, desmosylation (D) and 

glycosylation (G) represent two metabolic variability factors at inter-molecular and intra-molecular 

scales, respectively. 
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Figure 1: Geometric 

representation of simplex 

rule governing mass 

conservation at inter- and 

intra-molecular scales 

between three saponin 

clusters associated to three 

desmosylation levels and 

characterized by relative 

glycosylation levels of 

different carbons. 

(b) 

Legend. (a) Monodesmoside, (b) bidesmoside, (c) tridesmoside clusters 
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Figure 2: Different methodological steps of the simplex approach applied 

to the Astragalus saponin system stratified according to three degrees of 

desmosylation. 
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After population classification 

into q (=3) groups (Fig. 2a), 

combinations between clusters 

were carried out according to a 

simplex mixture design called 

Scheffé’s matrix [2] (Fig. 2b). 

This matrix combines q groups by 

randomly varying their weights wj 

(j = 1 to q) the ones at the expense 

of the others. In each combination, 

the total weight w of the q groups 

is constant: 𝑤=∑ 𝑤𝑗 =  𝑐𝑠𝑡
𝑞
𝑗=1  . 

So, the Scheffé’s matrix consisted 

of N linear combinations between 

the q groups. This number of 

mixtures (N) depends on the two 

parameters w (number of 

individuals per mixture) and q 

(number of clusters): 

 

In our case, q was equal to 3 

clusters and the total weight w was 

fixed to 10 molecules, so the 

combinatorial formula gives 66 

combinations. 

From the N (=66) combinations 

between the q (=3) groups, N 

average relative glycosylation 

profiles are calculated in a 

response matrix (Fig.2c). Then, 

the mixture design and its 

response matrix are iterated K 

(=30) times by bootstrap 

technique to take into account the 

molecular variability between and 

within the three clusters (Fig.2d). 

Finally, the K resulting response 

matrices were averaged to get a 

single matrix containing N 

smoothed molecular profiles 

(Fig.2e).  

 

            𝑁 =  
(𝑤 + 𝑞 − 1)!

  𝑞 − 1 ! 𝑤!
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From the finial matrix of the N smoothed profiles, scatter plots were used to visualize relationships 

between substituted carbons (Fig.2f). For each smoothed plot crossing relative glycosylation degrees of 

two given carbons, the three states of desmosylation j (j = 1, 2 or 3) were separately analyzed by 

projecting their weights on the corresponding points. Then, the values of equal weight were delimited 

by confidence ellipses. With w = 10, 11 weight values (from wj = 0 to wj = 10) are concerned resulting 

in eleven ellipses of weights for each desmosylation state. The succession of the eleven ellipses provides 

a trajectory indicating how the glycosylation degrees of the two considered carbons varied the one in 

relation to the other for the formation of considered desmosylation level. 

 

Results 

Graphical analysis of smoothed plots revealed competitive, sequential or cooperative processes between 

C3, C6, C16, C24 and C25 carbons for glycosylation (Fig.3): 

A competitive process was highlighted between carbon C3 and carbons C6, C16, C24 and C25 for 

glycosylation (Fig.3a-d). This was highlighted by an increase in glycosylation level of C3 at the expense 

of the other carbons for monodesmoside formation. This leads to monodesmosylated saponins with 

relatively well-glycosylated C3. In bidesmosides system, the level of C16 glycosylation showed a net 

increase independently of the carbons C24 and C25 states and with a possible alternative glycosylation 

way from C6 (Fig.3e-g). This indicated flexible role of C16 in the synthesis of bidesmoside saponins. 

On the other hand, positively inclined ellipses in the three plots (Fig.3e-g) indicated that 16-glycoslation 

played a preparatory role for next glycosylations concerning C6, C24 and C25 leading to tridesmoside 

system. These sequential glycosylation processes of carbons were highlighted in tridesmoside saponins 

showing high levels of glycosylation for the carbons C6, C24 and C25 vs intermediate and stable for 

C16 (Fig.3h-j). These simulation results indicate that carbons C6, C24 and C25 have played open roles 

for glycosylation for the synthesis of tridesmoside saponins.  
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Figure 3: Smoothed relationships between 

four glycosylated carbons (C3, C6, C24, 

C25) of Astragalus saponins showing 

global trajectories and local variations 

associated to metabolic diversification 

processes at inter- and intra-molecular 

scales, respectively. 
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Discussion  

Application of the new simplex approach helped to highlight laws governing structural variability of 

saponins based on cycloartane with aliphatic lateral chain. This shows original objective of simplex 

approach compared to others computational methods (ab initio, DFT (Density Functional Theory), 

docking, molecular dynamic…). In fact, the aim of most molecular modeling methods is the description 

and prediction of physical and chemical proprieties of single or paired molecules [3-5]. In ab initio and 

DFT methods, these proprieties are approached by extensive combinatorial calculations of inter-atomic 

interactions or by iterative calculations of electronic density, respectively. Using docking and molecular 

dynamic, predictions of molecular structures are carried out using by energy calculations; this implies 

calculations of all the possible binding energies between two molecules or resolution of the motion 

equation, respectively (Fig. 4). However, simplex approach is appropriate for analysis of self-regulation 

processes of multiple diversification poles of complex systems using machine-learning applied at both 

inter- and intra-molecular scales. Double scale analysis attributes advantage to simplex approach 

compared to other computational methods which focus only on intra-molecular scale (inter-atomic scale) 

(Fig. 4). Another advantage of simplex approach concerns big data analysis with possibility of working 

on unlimited number of molecules belonging to different groups by opposition to other methods 

conceived for analysis of single or paired molecules at once. Finally, the advantage of other methods 

turns out in the use of different types of variables (like as electronic proprieties, atomic proprieties….) 

which authorize their application in extended fields. In contrast the new simplex approach can only be 

applied in specific fields because in this method the variables must be of the same nature. 

 

Figure 4: Comparison between the simplex approach and other computational chemistry methods 
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