
MOL2NET, 2018, 4, http://sciforum.net/conference/mol2net-04 1

MDPI

MOL2NET, International Conference Series on Multidisciplinary Sciences

Optimal Scheduling for Precedence-Constrained Applications
on Heterogeneous Machines

Carlos Sotoa,c, Alejandro Santiagob, Héctor Frairea, Bernabé Dorronsoroc.

a Madero City Institute of Technology
b Polytechnic University of Altamira

c University of Cadiz

Graphical Abstract

Abstract.
High-Performance Computing (HPC) is a
growing necessity of our technological society,
HPC demands high loads of parallel computing
jobs, an optimal scheduling of the parallel
applications tasks is a priority to meet the
demands of its users on time. Branch-and-bound
(BB) Algorithms and Mathematical
Programming (MP) solve complex optimization
problems in an optimal manner, some MP or BB
even have parallel computing capabilities,
making them suitable solutions to solve real-
world problems. In this paper, we propose two
exact algorithms, a BB and an MP Model for
scheduling precedence-constrained applications,
on heterogeneous computing systems, as far as
we known the first ones on his kind presented in
the state of the art. One major contribution of
the work is the proposed formulations of the
objective function in both methods.
Experimental results obtained more than twenty
optimal values for synthetic applications from
the literature.

Introduction
Normally a heterogeneous computing system (HCS) provides high computing machines on parallel
and/or distributed systems which works cooperatively to solve problems that require an intensive
computing power and diverse computational requirements. The heterogeneous computing systems have
been used to solve a wide variety of problems that require a high computing power [1].

The principal issue in an HCS consists in finding the best schedule of tasks on machines such that
satisfies some requirements related to efficiency, workload, economic benefits, costs, and others. This
is a scheduling problem where the scheduling considers diverse operations per job and dependencies
between jobs. Typically, dependency is modeled by a directed graph [2], [3]. Either scheduling tasks

MILP for HCSP with dependencies 3

formulation is correct the computed makespan can vary; if the tasks are not ex-

ecuted in the best priority way. This is because the system can execute the tasks

in any feasible order that do not violate the precedence-constraints. Needing to

compute di↵erent priorities execution for tasks, this best priority verification is

computationally expensive, for example when two tasks are assigned to the same

machine and ready to go at the same time, which one should be executed first?

the obvious answer is the one that minimizes the overall makespan, but this

needs to be computed first to know.

Task m1 m2 m3 pi
0 11 13 9 11.0
1 10 15 11 12.0
2 09 12 14 11.6
3 12 16 10 12.3
4 15 11 19 15.0
5 13 09 05 8.60
6 11 15 13 12.3
7 11 15 10 12.0

!

" # $ %

& '

(

"" "("% ""

"$ "! ") "$ #(

#" "$

Fig. 1: Instance Sample 3 8 100 at the right a sample DAG with task labels.

The inside nodes are the task identifiers and values of the communication cost

function are next to the corresponding edges. At the left the computation costs.

In order to avoid these inconsistencies prioritise scheduling heuristics had

been develop, popular examples are the b-level computation, which bla bla bla

or the t-level computation[].

Algorithm 1 Recursive computation of b-level.

temp pi[tcurrent]

function b-level(tcurrent, temp)

max temp

for (tcurrent, tu) 2 E do
temp B-LEVEL(tu, (temp + (tcurrent, tu) + pi[tu]))

if max < temp then
max temp

end if
end for
return max

end function

Is easier to simplify problem formulation from Equation 1 is when the task

are executed in a topological order (feasible), allowing a lower computational

cost in the objective function:

MOL2NET, 2018, 4, http://sciforum.net/conference/mol2net-04 2

problems with and without precedence-constraints as in the parallel application scheduling, are known
to be NP-Hard [4]. That means no deterministic algorithm is available to solve it in polynomial time,
hence its relevance in solving it in an efficient way.

Parallel program representation
Generally, a parallel application is represented by a Directed Acyclic Graph (DAG) with the following
description. Given a DAG, 𝐺 = (𝑇, 𝐸), consists of a set 𝑇 of 𝑛 corresponding tasks 𝑡* of the parallel
program and set 𝐸 of edges. In general, the nodes present segments from an application that can be
computed independently; each edge +𝑡*, 𝑡,- ∈E represents a precedence constraint such that tasks 𝑡,
cannot start until 𝑡* finish their execution. The edge (𝑡*, 𝑡,) ∈ 𝐸 between tasks 𝑡*, 𝑡, also represents inter-
task communication. The HCS is represented by a set of machines 𝑀	 = 	{	𝑚3,𝑚4, … ,𝑚6	} with
different processing times for every task 𝑡* ∈ 	𝑇. The problem formulation is represented by the next
three equations.

𝒕𝒔𝒊 = 𝒎𝒂𝒙>𝐦𝐚𝐱>𝒕𝒇𝒋 + 𝑪𝒋,𝒌G ∀+𝒕𝒋, 𝒕𝒊- ∈ 𝑬,𝑷𝒘𝒊,𝒌 ∈ 𝒎𝒌G , (1)
𝒕𝒇𝒊 = 𝒕𝒔𝒊 + 𝑷𝒊,𝒌 , (2)
𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝐦𝐚𝐱

𝒊∈{𝒕𝟏,			…,			𝒕𝒏}
{𝒕𝒇𝒊} , (3)

where 𝑃*,U	is the computation time of the task 𝑡* in the machine 𝑚U , 𝑃𝑤*,U is the start time of an
available window of size 𝑃*,U in the machine 𝑚U, after the execution of their precedence tasks, and 𝐶,,U
is the communication of the task 𝑡, to the machine 𝑚U. 𝐶,,U is equal to the edge weight +𝑡,, 𝑡*- when the
tasks 𝑡* and 𝑡, are executed in a different machine, otherwise 𝐶,,U = 0. 𝑡𝑠* is the starting time of task 𝑖
and 𝑡𝑓* is the ending time of task 𝑖. Although the above formulation, the correct computed makespan
can vary; if the tasks are not executed in the best priority way. This is because the system can execute
the tasks in any feasible order that do not violate the precedence-constraints. Needing to compute
different priorities execution for tasks, this best priority verification is computationally expensive, for
example when two tasks are assigned to the same machine and ready to go at the same time, Which one
should be executed first? the obvious answer is the one that minimizes the overall makespan, but this
needs to be computed first to be known.

Figure 1. Instance Sample_3_8_100 at the right is the sample DAG with task labels. The inside nodes

are the task identifiers and the values of communication cost are next to the corresponding
edges. At the left are the computation costs.

In order to avoid these inconsistencies prioritizes scheduling heuristics had been developed, a popular
one is list scheduling. These heuristics makes use of two attributes: 1) the b-level computation, which is

MILP for HCSP with dependencies 3

formulation is correct the computed makespan can vary; if the tasks are not ex-

ecuted in the best priority way. This is because the system can execute the tasks

in any feasible order that do not violate the precedence-constraints. Needing to

compute di↵erent priorities execution for tasks, this best priority verification is

computationally expensive, for example when two tasks are assigned to the same

machine and ready to go at the same time, which one should be executed first?

the obvious answer is the one that minimizes the overall makespan, but this

needs to be computed first to know.

Task m1 m2 m3 pi
0 11 13 9 11.0
1 10 15 11 12.0
2 09 12 14 11.6
3 12 16 10 12.3
4 15 11 19 15.0
5 13 09 05 8.60
6 11 15 13 12.3
7 11 15 10 12.0

!

" # $ %

& '

(

"" "("% ""

"$ "! ") "$ #(

#" "$

Fig. 1: Instance Sample 3 8 100 at the right a sample DAG with task labels.

The inside nodes are the task identifiers and values of the communication cost

function are next to the corresponding edges. At the left the computation costs.

In order to avoid these inconsistencies prioritise scheduling heuristics had

been develop, popular examples are the b-level computation, which bla bla bla

or the t-level computation[].

Algorithm 1 Recursive computation of b-level.

temp pi[tcurrent]

function b-level(tcurrent, temp)

max temp

for (tcurrent, tu) 2 E do
temp B-LEVEL(tu, (temp + (tcurrent, tu) + pi[tu]))

if max < temp then
max temp

end if
end for
return max

end function

Is easier to simplify problem formulation from Equation 1 is when the task

are executed in a topological order (feasible), allowing a lower computational

cost in the objective function:

MOL2NET, 2018, 4, http://sciforum.net/conference/mol2net-04 3

the length of the longest path from the exit task of the DAG job to the task; 2) the t-level computation,
which is the length of the longest path from the entry task to the task [5]. The ¡Error! No se encuentra
el origen de la referencia. shows a recursive computation of b-level attribute. The heuristic used in this
work is the Heterogeneous Earliest-Finish-Time (HEFT) [6]. The heuristic computes the priority of all
the tasks and schedules each task on its best processor, which minimizes the task’s computation time.

Algorithm 1. Recursive computation of b-level.

It is easier to simplify the problem formulation from Equation 1, when the tasks are executed in a
topological order (feasible), allowing a lower computational cost of the objective function.

Objective function with topological order
Table 1 shows the values of b-level for each task from the example instance.

Table 1. b-level value from tasks from instance Sample_3_8_100.
Task 0 1 2 3 4 5 6 7
b-level 101.33 66.66 6.33 73.00 79.33 41.66 37.33 12.00

The Algorithm 2 shows the computation of the objective value with a topological order.

Algorithm 2. Objective function with a topological order.

Experimental results
The experimentation consists of solving a set of 21 instances from the literature. The reference for each
instance can be found in Table 2. The time limit to solve each instance was set to 37297 seconds.

MOL2NET, 2018, 4, http://sciforum.net/conference/mol2net-04 4

Table 2 shows the results provided by a branch-and-bound and a MILP model. The first column is the
instance name. The second column is the optimal value corresponding to the instance. The reference to
the instance is in the third column. The fourth and fifth columns are the objective value retrieved and the
required time of the branch-and-bound to find it, respectively. The sixth and seventh columns are the
objective value found and the required time of the MILP.

Table 2. The results for synthetic application in the literature.

Instance Optimal Reference BB Time MILP Time

Ahmad_3_9_28 22 [7] 22 0.13 22 0.46

Bittencourt_3_9_184 184 [8] 184 0.41 184 0.73

Hsu_3_10_84 80 [9] 80 14.36 80 0.60

Demiroz_3_7_47 47 [10] 47 0.00 47 0.13

Eswari_2_11 100 [11] 100 5.61 100 0.71

Eswari_2_11_61 56 [11] 56 3.69 56 1.52

Hamid_3_10 100 [12] 100 5.59 100 0.70

Ilavarasan_3_10_77 73 [13] 73 6.84 73 0.64

Ilavarasan_3_15_114 121 [14] 121 37297.23 121 28.05

Kang_3_10_76 73 [15] 73 7.88 73 2.34

Kang_3_10_84 79 [16] 79 17.80 79 0.76

Kuan_3_10_28 25 [17] 26 1.89 26 0.75

Liang_3_10_80 73 [18] 73 6.83 73 0.65

Linshan_4_9_38 40 [19] 40 11.31 40 1.99

Mohammad_2_11_64 56 [20] 56 3.83 56 1.51

SahA_3_11_131 118 [21] 118 6.88 118 3.43

SahB_3_6_76 66 [21] 66 0.00 66 0.13

Samantha_5_11_31 32 [22] 32 3696.81 32 6.21

Sample_3_8_100 81 [23] 81 0.08 81 0.75

Liang_3_10_80 73 [18] 73 6.83 73 0.67

YCLee_3_8_80 66 [24] 66 0.11 66 0.28

Average time (sec.) 1956.86 2.52

Conclusions
In this work, a novel model for Heterogenous Computing Scheduling Problem is presented. The mixed
integer linear programming model is compared against a branch-and-bound based on HEFT. Both
strategies achieve the optimal values, but the MILP gets a better computational time.

References

MOL2NET, 2018, 4, http://sciforum.net/conference/mol2net-04 5

[1] T. D. Braun et al., “A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems,” Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp.
810–837, Jun. 2001.

[2] A. Jones, L. C. Rabelo, and A. T. Sharawi, “Survey of Job Shop Scheduling Techniques,” in Wiley Encyclopedia of
Electrical and Electronics Engineering, Hoboken, NJ, USA: John Wiley & Sons, Inc., 1999.

[3] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of scheduling. Courier Corporation, 2012.
[4] O. Sinnen, Task Scheduling for Parallel Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007.
[5] Y. Xu, K. Li, L. He, and T. K. Truong, “A DAG scheduling scheme on heterogeneous computing systems using double

molecular structure-based chemical reaction optimization,” Journal of Parallel and Distributed Computing, vol. 73,
no. 9, pp. 1306–1322, Sep. 2013.

[6] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and low-complexity task scheduling for
heterogeneous computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, Mar.
2002.

[7] I. Ahmad, M. K. Dhodhi, and R. Ul–Mustafa, “DPS: dynamic priority scheduling heuristic for heterogeneous computing
systems,” IEE Proceedings - Computers and Digital Techniques, vol. 145, no. 6, p. 411, 1998.

[8] L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, “DAG Scheduling Using a Lookahead Variant of the
Heterogeneous Earliest Finish Time Algorithm,” in 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, Pisa, Italy, 2010, pp. 27–34.

[9] C.-H. Hsu, C.-W. Hsieh, and C.-T. Yang, “A Generalized Critical Task Anticipation Technique for DAG Scheduling,”
in Algorithms and Architectures for Parallel Processing, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp.
493–505.

[10] B. Demiroz and H. R. Topcuoglu, “Static Task Scheduling with a Unified Objective on Time and Resource Domains,”
The Computer Journal, vol. 49, no. 6, pp. 731–743, Nov. 2006.

[11] R. Eswari and S. Nickolas, “Path-Based Heuristic Task Scheduling Algorithm for Heterogeneous Distributed Computing
Systems,” in 2010 International Conference on Advances in Recent Technologies in Communication and Computing,
Washington, DC, USA, 2010, pp. 30–34.

[12] H. Arabnejad and J. G. Barbosa, “Performance Evaluation of List Based Scheduling on Heterogeneous Systems,” in
Proceedings of the 2011 international conference on Parallel Processing, Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 440–449.

[13] P. T. E. Ilavarasan, “Performance Effective Task Scheduling Algorithm for Heterogeneous Computing System,” in The
4th International Symposium on Parallel and Distributed Computing (ISPDC’05), Washington, DC, USA, 2007, vol.
3, pp. 28–38.

[14] E. Illvarasan and P. Thambidurai, “Levelized Scheduling of Directed A-Cyclic Precedence Constrained Task Graphs
onto Heterogeneous Computing System,” in First International Conference on Distributed Frameworks for
Multimedia Applications, Besançon, France, 2005, pp. 262–269.

[15] Y. Kang, Z. Zhang, and P. Chen, “An activity-based genetic algorithm approach to multiprocessor scheduling,” in 2011
Seventh International Conference on Natural Computation, Shanghai, 2011, vol. 2, pp. 1048–1052.

[16] Y. Kang and Y. Lin, “A recursive algorithm for scheduling of tasks in a heterogeneous distributed environment,” in
2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, 2011, vol. 4, pp.
2099–2103.

[17] K.-C. Lai and C.-T. Yang, “A dominant predecessor duplication scheduling algorithm for heterogeneous systems,” The
Journal of Supercomputing, vol. 44, no. 2, pp. 126–145, May 2008.

[18] L.-T. Lee, C.-W. Chen, H.-Y. Chang, C.-C. Tang, and K.-C. Pan, “A Non-critical Path Earliest-Finish Algorithm for
Inter-dependent Tasks in Heterogeneous Computing Environments,” in 2009 11th IEEE International Conference on
High Performance Computing and Communications, Seoul, 2009, pp. 603–608.

[19] L. Shen and T.-Y. Choe, “Posterior Task Scheduling Algorithms for Heterogeneous Computing Systems,” in High
Performance Computing for Computational Science - VECPAR 2006, vol. 4395, M. Daydé, J. M. L. M. Palma, A. L.
G. A. Coutinho, E. Pacitti, and J. C. Lopes, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 172–183.

[20] M. I. Daoud and N. Kharma, “A hybrid heuristic–genetic algorithm for task scheduling in heterogeneous processor
networks,” Journal of Parallel and Distributed Computing, vol. 71, no. 11, pp. 1518–1531, Nov. 2011.

[21] S. K. Sah and R. S. Singh, “Critical Path Based Scheduling of Multiple Applications in Heterogeneous Distributed
Computing,” in 2009 IEEE International Advance Computing Conference, 2009, pp. 99–104.

[22] S. Ranaweera and D. P. Agrawal, “A task duplication based scheduling algorithm for heterogeneous systems,” in
Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000, Washington, DC, USA,
2000, pp. 445–450.

[23] H. J. Fraire Huacuja, J. J. Gonzalez Barbosa, P. Bouvry, A. A. S. Pineda, and J. E. Pecero, “An iterative local search
algorithm for scheduling precedence-constrained applications on heterogeneous machines,” 6th Multidisciplinary
International Conference on Scheduling : Theory and Applications (MISTA 2013), pp. 47–485, 2010.

[24] Young-Choon Lee and A. Zomaya, “A Novel State Transition Method for Metaheuristic-Based Scheduling in
Heterogeneous Computing Systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 9, pp. 1215–
1223, Sep. 2008.

