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Abstract.   
High-Performance Computing (HPC) is a 
growing necessity of our technological society, 
HPC demands high loads of parallel computing 
jobs, an optimal scheduling of the parallel 
applications tasks is a priority to meet the 
demands of its users on time. Branch-and-bound 
(BB) Algorithms and Mathematical 
Programming (MP) solve complex optimization 
problems in an optimal manner, some MP or BB 
even have parallel computing capabilities, 
making them suitable solutions to solve real-
world problems. In this paper, we propose two 
exact algorithms, a BB and an MP Model for 
scheduling precedence-constrained applications, 
on heterogeneous computing systems, as far as 
we known the first ones on his kind presented in 
the state of the art. One major contribution of 
the work is the proposed formulations of the 
objective function in both methods. 
Experimental results obtained more than twenty 
optimal values for synthetic applications from 
the literature. 

 
Introduction 
Normally a heterogeneous computing system (HCS) provides high computing machines on parallel 
and/or distributed systems which works cooperatively to solve problems that require an intensive 
computing power and diverse computational requirements. The heterogeneous computing systems have 
been used to solve a wide variety of problems that require a high computing power [1]. 
 
The principal issue in an HCS consists in finding the best schedule of tasks on machines such that 
satisfies some requirements related to efficiency, workload, economic benefits, costs, and others. This 
is a scheduling problem where the scheduling considers diverse operations per job and dependencies 
between jobs. Typically, dependency is modeled by a directed graph [2], [3]. Either scheduling tasks 
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formulation is correct the computed makespan can vary; if the tasks are not ex-

ecuted in the best priority way. This is because the system can execute the tasks

in any feasible order that do not violate the precedence-constraints. Needing to

compute di↵erent priorities execution for tasks, this best priority verification is

computationally expensive, for example when two tasks are assigned to the same

machine and ready to go at the same time, which one should be executed first?

the obvious answer is the one that minimizes the overall makespan, but this

needs to be computed first to know.

Task m1 m2 m3 pi
0 11 13 9 11.0
1 10 15 11 12.0
2 09 12 14 11.6
3 12 16 10 12.3
4 15 11 19 15.0
5 13 09 05 8.60
6 11 15 13 12.3
7 11 15 10 12.0
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Fig. 1: Instance Sample 3 8 100 at the right a sample DAG with task labels.

The inside nodes are the task identifiers and values of the communication cost

function are next to the corresponding edges. At the left the computation costs.

In order to avoid these inconsistencies prioritise scheduling heuristics had

been develop, popular examples are the b-level computation, which bla bla bla

or the t-level computation[].

Algorithm 1 Recursive computation of b-level.

temp pi[tcurrent]

function b-level(tcurrent, temp)

max temp

for (tcurrent, tu) 2 E do
temp B-LEVEL(tu, (temp + (tcurrent, tu) + pi[tu]))

if max < temp then
max temp

end if
end for
return max

end function

Is easier to simplify problem formulation from Equation 1 is when the task

are executed in a topological order (feasible), allowing a lower computational

cost in the objective function:
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problems with and without precedence-constraints as in the parallel application scheduling, are known 
to be NP-Hard [4]. That means no deterministic algorithm is available to solve it in polynomial time, 
hence its relevance in solving it in an efficient way. 
 
Parallel program representation 
Generally, a parallel application is represented by a Directed Acyclic Graph (DAG) with the following 
description. Given a DAG, 𝐺 = (𝑇, 𝐸), consists of a set 𝑇 of 𝑛 corresponding tasks 𝑡*  of the parallel 
program and set 𝐸 of edges. In general, the nodes present segments from an application that can be 
computed independently; each edge +𝑡*, 𝑡,- ∈E represents a precedence constraint such that tasks 𝑡, 
cannot start until 𝑡* finish their execution. The edge (𝑡*, 𝑡,) ∈ 𝐸 between tasks 𝑡*, 𝑡, also represents inter-
task communication. The HCS is represented by a set of machines 𝑀	 = 	{	𝑚3,𝑚4, … ,𝑚6	}  with 
different processing times for every task 𝑡* ∈ 	𝑇. The problem formulation is represented by the next 
three equations. 

𝒕𝒔𝒊 = 𝒎𝒂𝒙>𝐦𝐚𝐱>𝒕𝒇𝒋 + 𝑪𝒋,𝒌G ∀+𝒕𝒋, 𝒕𝒊- ∈ 𝑬,𝑷𝒘𝒊,𝒌 ∈ 𝒎𝒌G , (1) 
𝒕𝒇𝒊 = 𝒕𝒔𝒊 + 𝑷𝒊,𝒌 ,      (2) 
𝑴𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝐦𝐚𝐱

𝒊∈{𝒕𝟏,			…,			𝒕𝒏}
{𝒕𝒇𝒊} ,    (3) 

where 𝑃*,U	is the computation time of the task 𝑡*  in the machine 𝑚U , 𝑃𝑤*,U  is the start time of an 
available window of size 𝑃*,U  in the machine 𝑚U, after the execution of their precedence tasks, and 𝐶,,U  
is the communication of the task 𝑡, to the machine 𝑚U. 𝐶,,U is equal to the edge weight +𝑡,, 𝑡*- when the 
tasks 𝑡* and 𝑡, are executed in a different machine, otherwise 𝐶,,U = 0. 𝑡𝑠* is the starting time of task 𝑖 
and 𝑡𝑓* is the ending time of task 𝑖. Although the above formulation, the correct computed makespan 
can vary; if the tasks are not executed in the best priority way. This is because the system can execute 
the tasks in any feasible order that do not violate the precedence-constraints. Needing to compute 
different priorities execution for tasks, this best priority verification is computationally expensive, for 
example when two tasks are assigned to the same machine and ready to go at the same time, Which one 
should be executed first? the obvious answer is the one that minimizes the overall makespan, but this 
needs to be computed first to be known. 
 

 
Figure 1. Instance Sample_3_8_100 at the right is the sample DAG with task labels. The inside nodes 

are the task identifiers and the values of communication cost are next to the corresponding 
edges. At the left are the computation costs. 

 
In order to avoid these inconsistencies prioritizes scheduling heuristics had been developed, a popular 
one is list scheduling. These heuristics makes use of two attributes: 1) the b-level computation, which is 
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formulation is correct the computed makespan can vary; if the tasks are not ex-

ecuted in the best priority way. This is because the system can execute the tasks

in any feasible order that do not violate the precedence-constraints. Needing to

compute di↵erent priorities execution for tasks, this best priority verification is

computationally expensive, for example when two tasks are assigned to the same

machine and ready to go at the same time, which one should be executed first?

the obvious answer is the one that minimizes the overall makespan, but this

needs to be computed first to know.
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been develop, popular examples are the b-level computation, which bla bla bla

or the t-level computation[].

Algorithm 1 Recursive computation of b-level.

temp pi[tcurrent]

function b-level(tcurrent, temp)

max temp

for (tcurrent, tu) 2 E do
temp B-LEVEL(tu, (temp + (tcurrent, tu) + pi[tu]))

if max < temp then
max temp

end if
end for
return max

end function

Is easier to simplify problem formulation from Equation 1 is when the task

are executed in a topological order (feasible), allowing a lower computational

cost in the objective function:
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the length of the longest path from the exit task of the DAG job to the task; 2) the t-level computation, 
which is the length of the longest path from the entry task to the task [5]. The ¡Error! No se encuentra 
el origen de la referencia. shows a recursive computation of b-level attribute. The heuristic used in this 
work is the Heterogeneous Earliest-Finish-Time (HEFT) [6]. The heuristic computes the priority of all 
the tasks and schedules each task on its best processor, which minimizes the task’s computation time. 
 
Algorithm 1. Recursive computation of b-level. 

 
It is easier to simplify the problem formulation from Equation 1, when the tasks are executed in a 
topological order (feasible), allowing a lower computational cost of the objective function. 
 
Objective function with topological order 
Table 1 shows the values of b-level for each task from the example instance. 
 

Table 1. b-level value from tasks from instance Sample_3_8_100. 
Task 0 1 2 3 4 5 6 7 
b-level 101.33 66.66 6.33 73.00 79.33 41.66 37.33 12.00 

 
The Algorithm 2 shows the computation of the objective value with a topological order. 
 
Algorithm 2. Objective function with a topological order. 

 
Experimental results 
The experimentation consists of solving a set of 21 instances from the literature. The reference for each 
instance can be found in Table 2. The time limit to solve each instance was set to 37297 seconds. 
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Table 2  shows the results provided by a branch-and-bound and a MILP model. The first column is the 
instance name. The second column is the optimal value corresponding to the instance. The reference to 
the instance is in the third column. The fourth and fifth columns are the objective value retrieved and the 
required time of the branch-and-bound to find it, respectively. The sixth and seventh columns are the 
objective value found and the required time of the MILP. 
 

 
Table 2. The results for synthetic application in the literature. 

Instance Optimal Reference BB Time MILP Time 

Ahmad_3_9_28 22 [7] 22  0.13  22  0.46  

Bittencourt_3_9_184 184 [8] 184  0.41  184  0.73  

Hsu_3_10_84 80 [9] 80  14.36  80  0.60  

Demiroz_3_7_47 47 [10] 47  0.00  47  0.13  

Eswari_2_11 100 [11] 100  5.61  100  0.71  

Eswari_2_11_61 56 [11] 56  3.69  56  1.52  

Hamid_3_10 100 [12] 100  5.59  100  0.70  

Ilavarasan_3_10_77 73 [13] 73  6.84  73  0.64  

Ilavarasan_3_15_114 121 [14] 121  37297.23  121  28.05  

Kang_3_10_76 73 [15] 73  7.88  73  2.34  

Kang_3_10_84 79 [16] 79  17.80  79   0.76  

Kuan_3_10_28 25 [17] 26  1.89  26  0.75  

Liang_3_10_80 73 [18] 73  6.83  73  0.65  

Linshan_4_9_38 40 [19] 40  11.31  40  1.99  

Mohammad_2_11_64 56 [20] 56  3.83  56  1.51  

SahA_3_11_131 118 [21] 118  6.88  118  3.43  

SahB_3_6_76 66 [21] 66  0.00  66  0.13  

Samantha_5_11_31 32 [22] 32  3696.81  32  6.21  

Sample_3_8_100 81 [23] 81  0.08  81  0.75  

Liang_3_10_80 73 [18] 73  6.83  73  0.67  

YCLee_3_8_80 66 [24] 66  0.11  66  0.28  

Average time (sec.)    1956.86  2.52 

 
Conclusions 
In this work, a novel model for Heterogenous Computing Scheduling Problem is presented. The mixed 
integer linear programming model is compared against a branch-and-bound based on HEFT. Both 
strategies achieve the optimal values, but the MILP gets a better computational time.  
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