

Encontro de Jovens Investigadores de Biologia Computacional Estrutural Faculdade de Medicina da Universidade do Porto

Changing the Paradigm in Petroleum Industry: Enhancing the catalytic rate of DszD by QM/MM calculations

Pedro Ferreira, Sérgio F. Sousa, Pedro A. Fernandes, Maria João Ramos

2

3

The problem:

- Sulfur compounds are present in crude oil in concentrations between 0.1 and 8% (w/w).
- Legal restrictions in increasingly more nations regarding the sulfur content in fossil fuels.
- The main method to desulfurize crude oil is the energetically expensive chemical hydrodesulfurization (HDS).
 - High temperature and high pressure

Fig 1. Chemical structure of dibenzothiophene (DBT)

4

The alternative:

- Biocatalytic desulfurization (BDS)
 - Explores the process "4S pathway" of Rhodococcus erythropolis
 - Uses DBT as a source of sulfur
 - Maintains the energetic value of the oil
 - Much cheaper than HDS
 - Does not produce undesirable by products
 - **PROBLEM:**
 - Catalytic rate not attractive for industrial application

4S pathway

- Desulfurization of DBT to
- 2'-hydroxybiphenyl
- Carried out by four enzymes of Rhodococcus erythropolis:
 - DszA
 - DszB
 - DszC
 - DszD

- Responsible for supplying FMNH₂ in the 4S pathway
- Overexpression of DszD improves the catalytic rate of the
- Experimental studies revealed the importance of Thr⁶²
- Mutation of Thr62 by Asn and Thr improved the catalytic rate

8

DszD

Step 1 - Activation Free Energy

Enzyme Chrzyme in Water Enzyme in Heptane

Sérgio F. Sousa et al. The Journal of Physical Chemistry A **2016** 120 (27), 5300-5306

Attempt to find ways to accelerate the limiting step of the DszD reaction using hybrid quantum mechanics/molecular mechanics (QM/MM) methods, by systematic mutation of Thr62 for 18 different amino acid residues.

2. Methods

3. Results

14

- The results confirm the potential that the reaction rate of DszD has to be enhanced through
- A direct correlation between the "type" of the residue and the activation free energy of the reaction cannot be drawn

- Negative charge may stabilize
 NAD⁺
- Hydrogen bonding system between water, ASP and NAD⁺ is unique
- GLU is farther from NADH than ASP which may explain the higher activation barrier

- Side chains stay far from the reaction coordinate
- Conformation of the side chains seem to lock NADH in place.
- Hydrogen bond NH—N5 in the variant with TYR is the weakest of all variants → less stabilization of the reactants structure → reactants and TS energetically closer

- Short or no side chains like those of VAL, ALA and GLY seem to let NADH misalign with respect to FMN
- Polar groups directly pointing to the reaction coordinate, may impair the free flow of the electron to be transferred

- Misalignment of NADH towards FMN in the variant with CYS
- Hydrogen bond between the $\rm NH_{\rm res33}$ – $\rm N5_{\rm FMN}$ weakens more from R \rightarrow TS with CYS (2.55 Å -> 2.74 Å) than with SER (2.43 Å -> 2.54 Å)
- Hydrogen bond OH_{Ser} $N5_{FMN}$ is stronger in the TS than in the reactants

FMN

- Positive charge of these residues are pointing to NADH which is oxidized to NAD+ with the loss of the hydride
- Very bulky residues

2.29 Å

FMN

3.78 Å

NADH

4. Conclusions

- The spectator residue seems to slow down the reaction
- The catalytic rate of DszD can be greatly enhanced through point mutations of the spectator residue
- Enhancement of the other enzymes of the 4S pathway is mandatory to make the 4S pathway industrially attractive comparatively to the chemical processes currently used.

5. Acknowledgements

Cofinanciado por:

UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regional