

MOL2NET, International Conference Series on Multidisciplinary Sciences

Unraveling the catalytic mechanism of Tryptophan synthase, a drug target against *Mycobacterium tuberculosis*

Carla S. Silva Teixeira^a, Sérgio F. Sousa^a, Nuno, M. F. S. A. Cerqueira^a

^a BioSIM - Departamento de BioMedicina, Faculdade de Medicina da Universidade do Porto

Abstract.

Tryptophan Synthase (TSase) is a bifunctional enzyme that catalyzes the last two steps in the synthesis of tryptophan (TRP). Each reaction is catalyzed in different active sites that are located in separate α and β subunits. The active site of the α -subunit catalyzes the formation of indole and gliceraldeyde-3-phosphate (G3P) from indole 3-glycerolphosphate (IGP). Indole is then transported through a 25 \approx physical tunnel to the active site of the β -subunit where it is added to a molecule of acrylate, derived from serine, to produce TRP, in a PLP dependent reaction¹.

Since TSase is absent in mammals, it is a promising target for the development of new antibiotics and vaccines against infectious bacteria, such as *Mycobacterium tuberculosis*.

The complex allosteric regulation of the enzyme has turn it difficult to co-crystalize the enzyme in its closed conformation with both substrates correctly placed in the α and β -active sites. In this work, we modulated three enzyme models for the posterior construction of QM/MM models: Model 1 (α -IGP and β -Ain);

Model 2 (β -Aex-Ser); Model 3 (β -Q2). All the
models were based on the crystallographic
structure with PDB ID: 3PR2 and the ligands
were either obtained from other crystallographic
structures (PDB ID:1QOQ) or modulated from
the analogs. Each of the three models were
emerged in a box of waters and subjected to a
MD simulation of 30 ns for detailed analysis and
sampling of the interactions formed. The RMSd
analysis of the last 20 ns of the three MD
simulations did not evidence any abnormal
fluctuation, and the equilibrated region presents
a low RMSd average value of respectively 2.90
\pm 0.17 Å for MD1; 2.64 \pm 0.12 Å for MD2 and
$2.37\pm$ 0.10 Å for MD3. We concluded that all
the models are stable and can be the basis for
further studies.
Afterwards four ONIOM QM/MM hybrid model
were built for geometry optimization, validation
of the initial enzyme-ligand interaction, and
posterior study of the catalytic mechanism of
both α and β subunits of the enzyme.

Acknowledgments

This work was supported by national funds from Fundação para a Ciência e a Tecnologia (SFRH/BD/114886/2016, IF/01310/2013, IF/00052/2014, and PTDC/QUI-QFI/31689/2017) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728). We acknowledge the use of HPC facilities (QTREX) provided by REQUIMTE where these calculations were performed.

References

1 Dunn, M. F., Niks, D., Ngo, H., Barends, T. R. & Schlichting, I. Tryptophan synthase: the workings of a channeling nanomachine. *Trends in biochemical sciences* **33**, 254-264, doi:10.1016/j.tibs.2008.04.008 (2008).