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Conclusions and Further Work.

Rule-Based Models are a useful modeling framework to reconstruct known interactions between biological components and to scale-up efficiently the number of agents and processes

considered. An ongoing effort to model every known gene, metabolism and processes that encompass the Molecular Biology Central Dogma would lead to a better understanding of cell

behavior and novel exploratory methods in Bioengineering, Synthetic Biology and Metabolic Engineering.

Introduction.

Synthetic Biology has the ultimate objective of designing cells, tissues, organisms and communities to produce predictable responses [1]. Interestingly, mathematical and computational

modeling has impacted prominently Synthetic Biology, where the manipulation of biological systems is cost-intensive, and computational resources could leverage experimental procedures

[2–4]. Traditionally, differential equations (ODEs) have been employed, but their assumptions are not as realistic as those made by other approaches. Particularly, it has been known that

biological systems are stochastic, discrete and structurally complex, hampering ODEs to fit these properties [5]. To further resolve a connection between modeling and designing organisms,

we present a Rule-Based Model of Gene Regulatory Networks (GRNs) in Escherichia coli simulated using the Gillespie's Stochastic Simulation Algorithm [6,7]. Under this approach, rules are

macroscopic chemical reactions between entities that recapitulate one or several patterns necessary for a transformation [8].

Methodology. Models were developed from literature GRNs [9,10] within the Kappa BioBrick

Framework [11], exported to kappa with PySB [12] and simulated 1000 Arbitrary Time Units

with PISKaS v1.3 [13]. Modeled rules are depicted graphically in following figure [13].

- The Core GRN Model (Figure 1, left) recapitulates the interaction of the E. coli RNAP

with each of the 7 Sigma Factors (σ’s) and the control of its transcription [9]. The GRN has

10 nodes and 28 edges. Three settings were simulated: one RNAP and 7 σ’s (Figure 2A,

blue dots); 7 RNAPs and 7 σ’s (Figure 2A, green dots); and 28 RNAPs and 28 σ’s (Figure

2A, red dots) distributed as many regulations each σ’s has in the GRN. Results are shown

in percentage of the total RNAP.

- The Plasmid Copy Regulation Model (Figure 1, right) recapitulates the expression and

regulatory interaction of RNA I and the RNA primer from plasmid ColEI [14], which

transcription was assume controlled only by σ70. Two settings were simulated: no

interaction between the non-coding RNAs (Figure 2B, blue line) and with interaction

between them at an arbitrary rate of 0.5 (Figure 2B, green line).

- A Genetic Algorithm (GA) was developed to read a kappa model and write new models

with modified parameter values in an arbitrary range selected by the user. The script calls

KaSim [15] or PISKaS [13] to run simulations inside a SLURM sbatch task. Finally, all

simulations are ranked using a distance-based function and an arbitrary number of models

are selected to generate the subsequent model population. The GA was tested using the

Core GRN Model and data from [16] with default options: 100 individuals, 100 iterations,

10 best models, 0.3 mutation rate [17] and the results are shown in Figure 3.

Figure 2. A, The Core GRN Model simulates free RNAP-σ complexes with good agreement

with reported values [18] and reduce variability with increasing protein availability (red dots);

B, the Plasmid Copy Regulation Model predicts a saturation dynamic when there is an

explicit interaction between the non-coding RNAs (green line).

Figure 3. A, Average error for the ten best models per iteration is reduced effectively using

common distance-based functions, e.g. Mean Squared Error, or the Mann-Whitney U-test

(MWUT); B, Average error for the ten best models per iteration using a Multiple Objective

Genetic Algorithm combining the U-test and other two common functions [17].

Figure 1. Representation of the Core GRN (Left) and the Plasmid Copy Regulation Model

(Right) as a two-compartment model. Only agents that represent free proteins and protein

complexes are able to move between compartment as depicted by the solid double arrows.
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