



**1st Coatings and Interfaces Web Conference 2019** 



# **"Application of Calixresorcinarenes** as Chemical Sensors" Larbi Eddaif<sup>1,2</sup>, Abdul Shaban<sup>2</sup> and Judit Telegdi<sup>1,2</sup>

Doctoral School on Materials Sciences and Technologies, Faculty of Light Industry and Environmental Engineering, Óbuda University, Doberdó Str. 6, Budapest 1034, Hungary.

Institute of Materials and Environmental Chemistry, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2.









### Conventional methods for heavy metals detection



Inductively coupled plasma/atomic emission spectrometry (ICP-AES)



Inductively coupled plasma/mass spectrometry (ICP-MS)



coatings

Atomic absorption spectroscopy (AAS)



0

### Conventional methods for heavy metals detection

Expensive,

Sample preparation, Professional skills....etc.



Lab-on-chip technology

1<sup>st</sup> CIWC 2019

coatings





#### Materials & methods

#### Synthesis of macrocycles

Their synthesis is based on the condensation between para-substituted phenols/resorcinols and aldehydes

• CAL 11 U: C-dec-9-en-1-ylcalix[4]resorcinarene,

1<sup>st</sup> CIWC 2019

coatings

- CAL 9U: C-trans-2, cis-6-octa-1,5-dien-1ylcalix[4]resorcinarene,
- CAL 10: C-nonylcalix[4]resorcinarene.



#### Materials & methods

#### Synthesis of macrocycles



**Figure 1.** Molecular structures of the synthetized calix[4]resorcinarenes : (a) C-nonylcalix[4]resorcinarene; (b) C-dec-9-en-1-ylcalix[4]resorcinarene; and (c) C-trans-2, cis-6-octa-1,5-dien-1-ylcalix[4]resorcinarene.



coatings

1<sup>st</sup> CIWC 2019





### Materials & methods

Melting points

determination

FTIR :

To define the functional groups

TG-DSC-MS:

To study the thermal behavior

XRD:

To evaluate the degree of crystallinity

1H NMR & 13C NMR:

To confirm the proposed structure

Characterization of macrocycles



1<sup>st</sup> CIWC 2019

*coatings* 

#### Characterization of macrocycles Melting points determination

**Table 1.** Experimental melting points of the synthesized molecules.

| Molecule code     | Molecule name                                                | Melting point ( <sup>0</sup> C) | Weight after grinding<br>(g) |
|-------------------|--------------------------------------------------------------|---------------------------------|------------------------------|
| CAL 111           | C-dec-9-en-1-<br>vlcalix[4]resorcinarene                     | 277 ()                          | 2 9/13/                      |
| CAL IIU<br>CAL 9U | C-trans-2, cis-6-octa-1,5-dien-1-<br>ylcalix[4]resorcinarene | Till 314.0 (No thermal event)   | 1.0644                       |
| <b>CAL 10</b>     | C-nonylcalix[4]resorcinarene                                 | 284.6                           | 0.0300                       |





0

### Results & discussion

- coatings

1<sup>st</sup> CIWC 2019

Characterization of macrocycles

FTIR measurements (To determine the functional groups)



Figure 2. FTIR spectra of the macrocycles





### Results & discussion

#### Characterization of macrocycles

FTIR measurements

| Table 2. IR p | parameters of | CAL 11U. |
|---------------|---------------|----------|
|---------------|---------------|----------|

| Molecule parts | Wave number<br>(cm <sup>-1</sup> )  | Bond                             | Nature of vibration                                                                     | Intensity                                              |
|----------------|-------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|
| Resorcinol     | 3253                                | Associated O-H                   | Stretching                                                                              | Strong and large                                       |
|                | 1164                                | C-O                              | Stretching                                                                              | Medium                                                 |
|                | 1292                                | O-H                              | In plan deformation                                                                     | Medium                                                 |
| Vinyl          | 3077<br>3034<br>1822<br>1619        | =C-H<br>=C-H<br>C-H<br>C=C       | Stretching<br>Stretching<br>Deformation harmonics<br>Stretching                         | Medium<br>Medium<br>Medium                             |
| Aromatic       | 3074<br>1499<br>1443<br>1980<br>835 | =C-H<br>C=C<br>C=C<br>C-H<br>C-H | Stretching<br>Stretching<br>Stretching<br>Deformation harmonics<br>Out plan deformation | Medium<br>Medium<br>Medium<br>Small<br>Medium to small |
| Alkane         | 2924<br>2853<br>721                 | CH <sub>2</sub>                  | Asymmetric stretching<br>Symmetric stretching<br>Rocking                                | Strong<br>Medium<br>Medium to small                    |



### Results & discussion

#### Characterization of macrocycles

FTIR measurements

#### Table 3. IR parameters of CAL 9U

| Molecule parts | Wave number<br>(cm <sup>-1</sup> ) | Bond           | Nature of vibration   | Intensity        |
|----------------|------------------------------------|----------------|-----------------------|------------------|
| Resorcinol     | 3364                               | Associated O-H | Stretching            | Strong and large |
|                | 1201                               | C-O            | Stretching            | Strong           |
|                | 1373                               | O-H            | In plan deformation   | Strong           |
| Aromatic       | 1598                               | C=C            | Stretching            | Small            |
|                | 1560                               | C=C            | Stretching            | Small            |
|                | 1501                               | C=C            | Stretching            | Medium           |
|                | 1437                               | C=C            | Stretching            | Medium           |
|                | 1707                               | C-H            | Deformation harmonics | Small            |
|                | 891                                | =С-Н           | Out plan deformation  | Medium           |
| Alkene         | 1652                               | C=C            | Stretching            | Medium           |
|                | 727 J Trans                        | =С-Н           | Out plan deformation  | Medium           |
|                | ן 1683                             | C=C            | Stretching            | Medium           |
|                | 1288 Cis                           | =С-Н           | In plan deformation   | Medium           |
|                | 972 J                              | =С-Н           | Out plan deformation  | Strong           |
|                | 1618                               | C=C            | Stretching            | Strong           |
| Alkane         | 2932                               | $CH_2$         | Asymmetric stretching | Strong           |
|                | 2871                               | $CH_{3}$       | Symmetric stretching  | Strong           |
|                | 1437                               | $CH_3$         | In plan deformation   | Medium           |
|                | 729                                | $CH_2$         | Rocking               | Medium           |



### Results & discussion

#### Characterization of macrocycles

#### FTIR measurements

#### Table 4. IR parameters of CAL 10

| Molecule<br>parts | Wave number<br>(cm <sup>-1</sup> )                  | Bond                                                                                                                                                                     | Nature of vibration                                                                                                                        | Intensity                                                             |
|-------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Resorcinol        | 3484                                                | Associated O-H                                                                                                                                                           | Stretching                                                                                                                                 | Strong & large                                                        |
|                   | 1195                                                | C-O                                                                                                                                                                      | Stretching                                                                                                                                 | Medium to strong                                                      |
|                   | 1377                                                | O-H                                                                                                                                                                      | In plan deformation                                                                                                                        | Medium                                                                |
| Aromatic          | 3038                                                | =C-H                                                                                                                                                                     | Stretching                                                                                                                                 | Very small                                                            |
|                   | 1616                                                | C=C                                                                                                                                                                      | Stretching                                                                                                                                 | Medium                                                                |
|                   | 1504                                                | C=C                                                                                                                                                                      | Stretching                                                                                                                                 | Medium                                                                |
|                   | 1464                                                | C=C                                                                                                                                                                      | Stretching                                                                                                                                 | Medium                                                                |
|                   | 1979                                                | C-H                                                                                                                                                                      | Deformation harmonics                                                                                                                      | Small                                                                 |
|                   | 900                                                 | =C-H                                                                                                                                                                     | Out plan deformation                                                                                                                       | Small                                                                 |
| Alkane            | 2852<br>1428<br>2921<br>1465<br>721<br>1342<br>1167 | $\begin{array}{c} \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{C-H}\\ \mathrm{Linear\ chain\ C-C}\end{array}$ | Symmetric stretching<br>Asymmetric plan deformation<br>Asymmetric stretching<br>Scissoring<br>Rocking<br>In plan deformation<br>Stretching | Strong<br>Medium<br>Strong<br>Medium<br>Medium<br>Very small<br>Small |



*coatings* 

1<sup>st</sup> CIWC 2019

#### Characterization of macrocycles

NMR Analysis (*To confirm the chemical structure*)



Figures 3,4. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of CAL 10







#### Characterization of macrocycles

NMR Analysis



Figures 5,6. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of CAL 11U





Characterization of macrocycles NMR Analysis

#### **CAL 10**

<sup>1</sup>**H NMR** (DMSO-d6, 400 MHz, 40 ° C) δ (ppm): 8.75 (8H, s); 7.12 (4H, s); 6.13 (4H, s); 4.23 (4H, t, J = 8.0Hz); 2.02 (8H, m); 1.47 – 1.00 (56H, m); 0.82 (12H, t, J = 6.3Hz).

<sup>13</sup>**C NMR** (DMSO-d6, 100 MHz, 50 ° C) δ (ppm): 151.5; 124.4; 123.0; 102.3; 33.8; 32.8; 31.1; 28.9; 28.8; 28.5; 27.5; 21.8; 13.6.

#### CAL 11U

<sup>1</sup>**H NMR** (DMSO-d6, 600 MHz, 25 ° C) δ (ppm): 8.85 (8H, s); 7.12 (4H, s); 6.13 (4H, s); 5.75 (4H, m); 4.98 (4H, m); 4.92 (4H, m); 4.22 (4H, t, J = 8.3Hz); 2.07 – 1.97 (16H, m); 1.43 – 1.05 (48H, m).

<sup>13</sup>**C NMR** (DMSO-d6, 150 MHz, 25°C) δ (ppm): 151.7; 138.7; 124.7; 122.9; 114.5; 102.3; 33.2; 33.0; 29.2; 29.1; 28.9; 28.5; 28.3; 27.7.





coatings

1<sup>st</sup> CIWC 2019

Characterization of macrocycles TG-DSC-MS Investigations (*To study the thermal behavior*)



**Figure 7**. The results of thermogravimetric (7a), and differential scanning calorimetric (7b) measurements (the inset in figure 7a is a magnification of the TG curve from the beginning of the measurement up to 150 °C).



0

#### Results & discussion

*coatings* 

1<sup>st</sup> CIWC 2019

#### Characterization of macrocycles TG-DSC-MS Investigations



Figure 8. Mass spectra of the evolved volatiles form sample CAL 10, at 87 °C





0

### Results & discussion

#### Characterization of macrocycles TG-DSC-MS Investigations



Figure 9. Mass spectra of the evolved volatiles form sample CAL 9U, at 83 °C





0

### Results & discussion

#### Characterization of macrocycles TG-DSC-MS Investigations



**Figure 10**. Mass spectra of the evolved volatiles form sample CAL 11U, at 92 °C



#### Characterization of macrocycles

Powder XRD studies (To investigate the crystallinity degree)



coatings

1<sup>st</sup> CIWC 2019

Figure 11. Powder X-ray diffractograms of the three calix[4]resorcinarenes



Characterization of macrocycles Conclusion

The *melting points* of the synthesized molecules were between 277 and 314 °C, their *FTIR* spectra showed all the functional groups of the structures, furthermore the NMR studies confirmed the proposed structures, the TGA-DSC-MS analysis gave the same range of melting points found directly, also they demonstrated that the calixresorcinarenes are pure, by analyzing the results of the mass spectrometric evolved gas analysis (MS-EGA), the volatiles released from the samples were exclusively water, some traces of ethyl alcohol and acetonitrile were found also, they are due to the preparation process, besides the Powder **XRD** patterns showed that CAL 10 is totally crystalline, that CAL 11U is a mixture of amorphous and crystallized fractions, and that CAL 9U is practically amorphous.





#### Óbudai Egyetem **mta ttk**

#### Results & discussion

**QCM-I** studies





Frequency changes according to adsorption of chemicals on the QCM Surface

QCM-I 008 Unit









#### Results & discussion

**QCM-I** studies



**Figure 12.** Variation of fundamental frequency, and fundamental dissipation energy due to the injection of heavy metals solution in time.



### Conclusions

✓ A series of calixresorcinarene macrocycles were synthesized by a simple condensation reaction, they were characterized by different techniques (Melting points determination, NMR, FTIR, TG-DSC-MS, and XRD).

The quartz crystal microbalance (QCM) is a nanogram sensitive technique that utilizes acoustic waves generated by oscillating a piezoelectric single crystal quartz plate to measure mass. The results of the application of calixresorcinarene macrocycles as sensing platforms showed the usefulness of this technique for the detection of heavy metal ions (Lead nitrate) at very low level (ppm).



### References

- 1. McGaw, E.A.; Swain, G.M. A comparison of boron-doped diamond thin-film and Hg-coated glassy carbon electrodes for anodic stripping voltammetric determination of heavy metal ions in aqueous media. *Anal Chim Acta* **2006**, *575*(2),180-9, DOI: 10.1016/j.aca.2006.05.094.
- Valderi, L.D.; Dirce, P.; Adilson, J.C. Determination of heavy metals by inductively coupled plasma mass spectrometry after online separation and preconcentration. *Spectrochimica Acta Part B* 1998, *53(11)*, 1527–1539, DOI: 10.1016/S0584-8547(98)00180-3.
- 3. Malik, A.K.; Kaur, V.; Verma, N. A review on solid phase microextraction-high performance liquid chromatography as a novel tool for the analysis of toxic metal ions. *Talanta* **2006**, *68* (*3*), 842–849, DOI: 10.1016/j.talanta.2005.06.005.
- 4. Gulino, A.; Lupo, F.; Cristaldi, D.A.; Pappalardo, S.; Capici, C.; Gattuso, G.; Notti, A.; Parisi, M.F. A viable route for lithium ion detection. *Eur J Inorg Chem* **2014**, 2013, 442–449, DOI: 10.1002/ejic.201301213.
- 5. Cristaldi, D.A.; Fragala, I.; Pappalardo, A.; Toscano, R.M.; Ballistreri, F.P.; Tomaselli, G.A.; Gulino, A. Sensing of linear alkylammonium ions by a 5-pyrenoylamido-calix [5] arene solution and monolayer using luminescence measurements. *J Mater Chem* **2012**, *22*(*2*), 675–683, DOI:10.1039/C1JM13475B.
- Ma, Y-H.; Yuan, R.; Chai, Y-Q.; Liu, X-L. A new aluminum (iii)-selective potentiometric sensor based on n, n'-propanediamide bis 6. (2-salicylideneimine) Eng as neutral carrier. Mater Sci C 2010. 1(30), 209-213. DOI: a https://doi.org/10.1016/j.msec.2009.10.005.
- 7. Eddaif, L.; Trif, L.; Telegdi, J; Shaban, A. Calix[4]resorcinarene macrocycles: Synthesis, thermal behavior and crystalline characterization. *J Therm Anal Calorim* **2019**. DOI: https://doi.org/10.1007/s10973-018-7978-0.



Thank you foryour

## attention



0