Comparison of Proximal Remote Sensing Devices for Estimating Physiological Responses of Eggplants to Root-Knot Nematodes

Alex Silva-Sánchez¹, Julia Buil-Salafranca¹, Andrea Casadesús Cabral¹, Naroa Uriz-Ezcaray¹, Helio Adan García-Mendívil², Francisco Javier Sorribas^{1,2}, José Luis Araus^{1,3}, Adrian Gracia- Romero^{1,3*}

¹ New Perspectives in Environmental Agrobiology, Master's degree in Environmental Agrobiology, Faculty of Biology, University from Barcelona, Barcelona

² Department of Agri-Food Engineering and Biotechnology, UniversitatPolitècnica de Catalunya, EsteveTerradas 8, 08860 Castelldefels, Barcelona, Spain

³ Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain

* Correspondence: adriangraciaromero@hotmail.com

Interest components:

- Phytochemical
- Nutraceutical

Meloidogyne javanica

CAUSES OF THE ROOT-KNOT NEMATODE:

Threatened by

- Root damages
- Restriction of nutrient and water uptake
- Limit the production

Solanum melongena

Solanum torvum

Compare different proximal remote sensing approaches at plant and single leaf to assess the effect in eggplant of grafting with the tolerant species *Solanum torvum*, and conclude which is more convenient to assess the eggplant response to nematode effects.

EXPERIMENTS

Plant material and growing conditions

Agropolis. ESAB

Soil infested with

EXPERIMENTS

EXPERIMENTS

RESULTS AND DISCUSSION

Measurement level	Sensor/Technique	Trait	Accuracy		Compliant difficultur	Compling time	Doct aveccosing	Destructivoness	Cost
			ANOVA	R	sampling difficulty	Sampling time	Post-processing	Destructiveness	Cost
Leaf-based	Dualex	Chlorophyll content Anthocyanyn content Flavonoids content NBI	ns ns ns ns	0.422 0.105 -0.270 0.277					
	Photosynq	Phi2 PhiNO PhiNPQ Rel Chl Fv'/Fm'	ns ns ns ns ns	0.438 -0.169 -0.388 0.526 0.335					
Canopy-based	GreenSeeker	NDVI	*	0.601					
	RGB images	Hue GA GGA NGRDI	* ** * **	0.662 0.706 0.635 0.642					
	Infrared gun	Canopy temperature	**	-0.618					
	Thermal camera + RGB	Hue GA GGA Canopy temperature CT[GA]	** * ns ns ns	0.590 0.472 0.547 -0.157 -0.154					
			-						

RESULTS AND DISCUSSION

CONCLUSIONS

- Single-leaf measurements did not show significant differences between grafted and non-grafted plants and with low correlations → Root-knot nematodes did not affect leaf chlorophylls.
- Plant-based measurements showed significant differences between both types of plants and higher yield correlations with yield.
- RGB indexes showed best correlations with yield. Plant temperature also performed well assessing differences. However, both categories of remote sensing traits (smartphone) were worse. → importance of how and when the temperature measurements are taken.
- Dualex and Photosynq better if measured in an earlier phenological stage.
- Canopy-based measurements permit to study the whole plot at once (without the need of replicates) and showed the best results.
- RGB indexes are presented as a promising remote sensing technique mainly due to its user friendly and low-cost nature. It should be noted that this measurement can be easily taken with a simple smartphone.