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Abstract: Change detection, which is a process of identifying changes occurred in a geographical 12 
area over the time, plays a key role in many applications including assessing natural disasters, 13 
monitoring crops, and managing water resources. In the past decades, many change detection 14 
techniques have been proposed. Hence, evaluating and analyzing of probability of changes and 15 
interpreting them, is essential task which leads to better management of natural resources and 16 
preventing disasters. For this purpose, we adopted an approach to estimate probability of occurring 17 
detected changes. Based on this approach, change pixels will be categorized and labeled as 18 
probabilities (as a percentage). In this paper, the proposed framework consists of the following four 19 
steps. Firstly, this research produces binary change maps from methods have been proposed in the 20 
literature. Then unmixing process adopted and in next step spectral similarity of pixels is calculated in 21 
abundances map (of endmembers) domain. A measurement of spectral similarity identifies the finer 22 
spectral differences between the two-hyperspectral images. Finally, masking spectral similarity 23 
values by binary change map resulting change probability map. The experimental results show that 24 
the method has a good result, and can be widely used in hyperspectral change detection 25 
applications. 26 
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 28 

1. Introduction 29 

Change detection (CD) is a fundamental and challenging subject of research, including 30 
remote sensing (RS), monitoring and surveillance, civil engineering, mechanical engineering, 31 
medical diagnosis, and etc [1, 2]. In RS applications, CD is defined as the process of detecting the 32 
variations of materials in a given scene, due to time or as a result of a significant event (such as a 33 
natural hazard) and natural metamorphoses, by analyzing co-registrated multi-temporal images of 34 
the same geographical area acquired at different times [3]. The remote sensing CD has a wide range 35 
of practical application in many fields, such as disaster assessment, urban sprawl, land cover 36 
monitoring, environmental monitoring, ecosystem monitoring [3, 4]. The main principle for utilizing 37 
RS data for CD is that changes in the object of interest will alter the spectral behavior (reflectance 38 
value) that is separable from changes caused by factors such as atmospheric conditions, illumination 39 
and viewing angles, soil moistures, and etc [1, 5]. 40 

The Earth’s surface undergoes significant changes over time due to influences originating from 41 
the increasing urbanization and human population [1, 6]. In addition, the demand for natural 42 
resources have been increased which leads to side effects in land cover and land use [1]. Hence, an 43 
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analysis of the changes by the RS tool is necessary for the better management of natural resources, 44 
and preventing disasters [6]. In addition, for the planning purposes, estimating probability/intensity 45 
of changes is necessary. 46 

In the past decades for discriminating change/no-change pixels many binary CD techniques have 47 
been proposed [6]. Evaluating and analyzing of probability/intensity of occurred changes and 48 
interpreting them, is essential task which leads to better monitoring of study area. The purpose of 49 
this paper is producing probability/intensity map of changes. For this purpose, we adopted an 50 
approach to estimate probability/intensity of detected changes. Based on this approach, change 51 
maps’s probability/intensity is produced and pixels categorized based on percentage of probabilities. 52 

2. Experiments  53 

2.1. Study Area and Data Set 54 

In this work, we utilized a widely used real-world hyperspectral images (HSIs) to evaluate the 55 
performance of the proposed method. This data set is a reference and benchmark data set that has 56 
been used previously in many hyperspectral CD approaches [6]. This data set can be found online in 57 
http://rslab.ut.ac.ir. Figure 1 shows the case study area that covers a range of 307×241 of an irrigated 58 
agricultural field in the city of Hermiston in Umatilla County, Oregon, USA. The data were acquired 59 
on May 1, 2004, and May 8, 2007. The main changes between the acquisition dates relate to land cover 60 
changes of agricultural fields. 61 

  

(a) (b) (c) 

Figure 1. The (a) and (b) false color composite of the original hyperspectral images acquired in 2004 62 
and 2007 of the USA data set respectively, and (c) binary change map ground truth. 63 

Due to environmental and equipment conditions, data pre-processing plays a crucial role in RS 64 
before the beginning of the main process. The pre-processing are made in two steps: (1) geometric 65 
preprocessing and (2) spectral preprocessing (including remove no-data bands, destriping, noise 66 
reduction, smile–frown detection, radiometric calibration, and atmospheric correction) [7]. 67 

2.2. Adopted Methodology 68 

The focus of this research is producing probability/ intensity of occurred changes. To this end, 69 
distinguishing change/no-change pixels is crucial. In the past decades, many binary CD algorithms 70 
have been proposed. After discriminating change/no-change pixels, change pixels will be categorized 71 
as a percentage of probabilities based on proposed approach. According to the flowchart in Figure 1, 72 
the proposed framework consists of the following four steps after pre-processing. In first step, binary 73 
change map is produced and change/no-change pixels are discriminated. In second step, unmixing 74 
process is utilized. In order to produce a probability/intensity map of changes between two multi-75 
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temporal images, some similarity metrics are used in third step for measuring spectral similarity of 76 
pixels in abundances (of endmembers) space. A measurement of spectral similarity identifies the finer 77 
spectral differences between the two HSIs. Finally, in fourth step spectral similarity values are 78 
masked by binary change map (BCM) leads to probability/intensity map. 79 

 80 

Figure 2. The flowchart of the proposed approach to produce probability map of changes. 81 

2.2.1. Step 1 82 

To distinguish change/no-change pixels, we used five binary CD methods, which have been 83 
proposed in the literature. The most representative change/no-change methods are image math and 84 
transformations such as Principal Component Analysis (PCA), Independent Component Analysis 85 
(ICA), Cross Equalization (CE), Maximum Likelihood Estimator (MLE) and Euclidian Distance (ED) 86 
[6]. Figure 3 shows the visual analysis of aforementioned binary CD methods. The final BCM 87 
obtained using majority voting concept (of implemented methods) to achieve a change map with 88 
high accuracy. 89 

      

(a) (b) (c) (d) (e) (f) 

Figure 3. Result of the performance of binary change detection methods in USA dataset. (a) PCA, (b) 90 
ICA, (c) CE, (d) MLE, (e) ED, and (f) Final BCM. 91 
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Numerical evaluation of implemented methods and final BCM presented in Table 1. The 92 
accuracy of the CD methods is measured through Overall Accuracy (OA), Kappa (κ), False Positive 93 
Rate (FPR) and Matthews Correlation Coefficient (MCC) indices. 94 

Table 1. Numerical analysis of binary change detection methods. 95 

Method OA (%) κ FPR MCC 

PCA 96.20 0.8835 0.0583 0.8845 

ICA 88.68 0.6504 0.2425 0.6516 

CE 96.54 0.8909 0.0672 0.8912 

MLE 87.83 0.5874 0.3856 0.5900 

ED 96.15 0.8852 0 0.8911 

Final BCM 97.00 0.9055 0.0527 0.9059 

2.2.2. Step 2 96 

Endmember extraction is a vital step in spectral unmixing of HSIs. Endmembers refer to the pure 97 
materials spectra in HSIs, and endmember extraction is a process of finding the spectra of all the 98 
endmembers [7]. In this research, the endmembers are extracted using the simplex identification via 99 
split augmented Lagrangian (SISAL) method [8]. In continues similarity assessment of endmembers 100 
based on spectral angle mapper (SAM) algorithm adopted (Equation (1)). Finally, using fully 101 
constrained least squares (FCLS) method proposed in [9] estimates the fraction of abundances. 102 

2.2.3. Step 3 103 

The objective of this step is to make an analysis of four similarity metrics to produce change 104 
probability/intensity map. The selection of the metrics has been conducted considering its aim and 105 
good performance of detecting spectral differences. According the above, the selected metrics are 106 
SAM  [10], Pearson Correlation Coefficient (PCC) [11], Bray-Curtis dissimilarity (BCD) [12] and 107 
Jeffries-Matusita Distance (JMD) [13]. 108 

The SAM was proposed in [10] to measure the similarity between two spectral feature vectors. 109 
In [14], the angle between each multi-temporal image and a reference vector measured by means of 110 
SAM metric was proposed as a solution for CD in specific land covers. In this paper, the spectral 111 
similarity based on SAM obtained by considering each spectrum as a vector in abundances space. 112 
This algorithm can be calculated as Equation (1) [14-16].  113 

𝐒𝛂 = 𝐜𝐨𝐬−𝟏 (
∑ 𝐱𝐢𝐲𝐢
𝐧
𝐢=𝟏

|∑ 𝐱𝐢
𝟐𝐧

𝐢=𝟏 |

𝟏
𝟐|∑ 𝐲𝐢

𝟐𝐧
𝐢=𝟏 |

𝟏
𝟐

), (1) 

where x is spectral signature vector of a pixel (in abundances space) in time1, y is spectral 114 
signature vector of a pixel (in abundances space) in time2 and n is the number of abundances maps 115 
(endmembers). Spectral angle goes from 0 when signatures are identical to 90 when signatures are 116 
completely different. 117 

The PCC is one of the most popular measures for calculating the dependency between two 118 
spectral vectors [11]. The PCC between spectral random vectors is defined as Equation (2) [11]. This 119 
measure is widely used in RS applications. A correlation of -1.0 shows a perfect negative correlation, 120 
while a correlation of 1.0 shows a perfect positive correlation. A correlation of 0.0 shows no 121 
relationship between the movements of the two variables. 122 

𝐏𝐱𝐲 =
∑ (𝐱𝐢−�̅�)−(𝐲𝐢−�̅�)
𝐧
𝐢=𝟏

√∑ (𝐱𝐢−�̅�)
𝟐𝐧

𝐢=𝟏 √∑ (𝐲𝐢−�̅�)
𝟐𝐧

𝐢=𝟏

, (2) 
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The BCD metric is one of the well-known dissimilarity metric of quantifying the difference 123 
between samples that has the value between 0.0 (when signatures are completely different) and 1.0 124 
(when signatures are identical) [12]. The normalized formula for calculating the BCD between two 125 
samples is given as Equation (3) [12]. 126 

𝐒(𝐱, 𝐲) =
∑ |𝐱𝐢+𝐲𝐢|
𝐧
𝐢=𝟏

∑ (𝐱𝐢−𝐲𝐢)
𝐧
𝐢=𝟏

, (3) 

The JMD is a widely used statistical separability criterion. It is a parametric criterion, for which 127 
the values range between 0.0 (when signatures are identical) and 2.0 (when signatures are completely 128 
different). The JMD is calculated as Equation (4) [13]. 129 

𝐉𝐱𝐲 = 𝟐(𝟏 − 𝐞−𝐁), 

𝐁 =
𝟏

𝟖
(𝐱 − 𝐲)𝐓 (

∑𝐱 + ∑𝐲

𝟐
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−𝟏
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𝟏

𝟐
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𝟏
𝟐 ||∑ 𝐲|

𝟏
𝟐|
), 

(4) 

2.2.4. Step 4 130 

In final step the results of step 3 masked by BCM produced in step 1. The results of this 131 
subsection presented in next section. For achieving final probability/intensity map, we utilized 132 
majority voting concept. 133 

3. Results and Discussion 134 

As shown in Figure 4, probability/intensity map of changes produced by using spectral 135 
similarity metrics.  136 

 137 

      

(a) (b) (c) (d) (e) (f) 

Figure 4. Result of probability estimation of change map’s using spectral similarity metrics. (a) SAM, 138 
(b) PCC, (c) BCD, (d) JMD, (e) final probability map of changes, and (f) Legend. 139 

By utilizing majority voting, the probability/intensity map of changes is produced more 140 
confidently. The probability estimation can be widely used in hyperspectral CD applications. 141 
Probability/intensity analysis was applied to analyze changed pixels. According to Figure 4(f) 142 
changes’ probability is on a scale from 0% to 100%. Figure 4(e) shows that, probability of the most of 143 
changed pixels is in the range of 40-60%. 144 

4. Conclusions  145 

CD plays a key role in many applications including assessing natural disasters, monitoring 146 
crops, and managing water resources. In this study, an approach for analyzing detected changes is 147 
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proposed. Utilizing the nature of occurred changes along with the probability/intensity of changes is 148 
a strategy that can be taken for better management of study area. 149 

Abbreviations 150 

The following abbreviations are used in this manuscript: 151 

RS: Remote Sensing 152 
HSI: Hyperspectral Image 153 
CD: Change Detection 154 
BCM: Binary Change Map 155 
SAM: Spectral Angle Mapper 156 
PCC: Pearson Correlation Coefficient  157 
BCD: Bray-Curtis Dissimilarity  158 
JMD: Jeffries-Matusita Distance 159 
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