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Abstract: The following two earthquakes occurred in Greece during 2019: First, a Mw5.4 earthquake1

close to Preveza city in Western Greece on 5 February and a Mw5.3 earthquake 50km East of Patras on2

30 March. Here, we present the natural time analysis of the Seismic Electric Signals (SES) activities that3

have been recorded before these two earthquakes. In addition, we explain how the occurrence times4

of these two earthquakes can be identified by analyzing in natural time the seismicity subsequent to5

the SES activities.6
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1. Introduction8

According to the United States Geological Survey (USGS) [1], a strong earthquake (EQ) of moment9

magnitude Mw6.8 occurred on 25 October 2018 22:55 UTC at an epicentral distance around 133 km SW10

of the city of Patras, Western Greece (see Figure 1). It was preceded by an anomalous geolectric signal11

that was recorded on 2 October 2018 at a measuring station 70km away from the epicenter[2]. Upon12

analyzing this signal in natural time, it was found[2] that it conforms to the conditions suggested (e.g.,13

see [3–5])) for its clarification as precursory Seismic Electric Signal (SES) activity[4,6,7]. Notably, the14

observed lead time of 23 days lies within the range of values that has been very recently identified[8]15

as being statistically significant for the precursory variations of the electric field of the Earth. Moreover,16

the analysis in natural time of the seismicity subsequent to the SES activity in the area candidate to17

suffer this strong earthquake has revealed[2] that the criticality conditions were obeyed early in the18

morning of 18 October 2018, i.e., almost a week before the strong earthquake occurrence, in agreement19

with earlier findings[4]. The application[2] of the recent method of nowcasting earthquakes[9–13],20

which is based on natural time, has revealed that an earthquake potential score around 80% was21

observed just before the occurrence of this Mw6.8 earthquake. Here, we focus on the recording[14]22

of additional SES activities after the occurrence of the latter earthquake in the beginning of January23

2019 (see below) that preceded the following two earthquakes in Greece during 2019: First, a Mw5.424

earthquake[15] close to Preveza city in Western Greece on 5 February 2019 and a Mw5.3 earthquake[16]25

on 30 March 2019 a few tens of km East of Patras SES measuring station (labeled PAT in Figure 1).26

2. Results27

Two SES activities have been recorded[14] by the VAN telemetric network[3] operating in real time28

in Greece on 3 January 2019 and 9 January 2019 at the measuring stations PAT and PIR, respectively29

(see Figure 1).30
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Figure 1. Map of the area N42
34 E28

19 in which the locations of the SES measuring stations of the VAN
telemetric network[3] operating in Greece are shown by the blue circles. The blue square corresponds
to the central station operating at Glyfada, Athens (ATH), where the data are collected. The thick black
line depicts the Hellenic arc[17] while the gray shaded area and the black rectangle the selectivity map
of Pirgos (PIR) measuring station (see Fig.1 of [2]) and Patras (PAT) measuring station (see the rectangle
with solid lines in Fig.8 of [18]), respectively. After the recording of the SES activities on 3 January
2019 at PAT and on 9 January 2019 at PIR, the areas corresponding to the selectivity maps of these
two measuring stations have been reported in [14] as probable to suffer a strong EQ. The red stars
correspond to the epicenters of the Mw6.8 EQ on 25 October 2018, the Mw=5.4 EQ on 5 February 2019,
and the Mw=5.3 EQ on 30 March 2019.

According to the VAN method of short-term earthquake prediction[3,4,6,7,19–21], the electric31

signals that are emitted from the future focal area as the stress increases prior to the EQ -due to32

the collective (re)orientation (cf. such a cooperativity is a hallmark showing that the region enters33

the critical stage) [22] of the anyhow pre-existing electric dipoles[23] in the ionic constituents of34

the rocks, e.g., see Fig.1 of [24]- follow[7] conductive paths in the solid Earth crust and become35

detactable at certain (SES sensitive) sites on the Earth’s surface giving rise to the so-called selectivity36

phenomenon[7,17,25–31]. This means that an SES measuring station is capable of recording SESs37

emitted from certain EQ prone areas. After long experimentation (cf. SES research in Greece has38

started since 1980s, e.g. see [32,33]), for each measuring station one may construct a selectivity map of39
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this station by considering the EQs that have been preceded by SES recorded in the station as well as40

by using geological and geophysical data (since faults are usually highly more conductive than their41

surroundings, they consitute conductive paths, e.g. see [25]). The gray shaded area in Figure 1 depicts42

the selectivity map of the PIR measuring station as reported in [2] while the black rectangle in the same43

figure corresponds the selectivity map of the PAT measuring station[14,18].44

The SES activity recorded on 3 January 2019 at PAT station can be seen in Fig.5 of [14]. The analysis45

in natural time has led[14] to values of κ1, S and S− which are compatible with those observed for SES46

(see Section 4.1). After applying the methodology suggested in [34] for the analysis of the SES activity47

recorded on 3 January 2019 at PAT we obtain κ1 = 0.075(22), S = 0.071(22), and S− = 0.075(30). More48

or less similar results are found for the SES recorded on 9 January 2019 at PIR.49

After these observations and in order to estimate the occurrence time of the impending EQs, we50

started to analyze in natural time the seismic activity occurring after the SES within the respective51

selectivity maps of each measuring station, i.e., the gray shaded area of Figure 1 for PIR and the one52

shown by the black rectangle in Figure 1 for PAT. We observed (see Fig.7 of [35]) that when analyzing53

the seismicity within the PIR selectivity map, the criticality condition κ1 = 0.070 has been fulfilled upon54

the occurrence of a ML(ATH)=3.5 EQ at 12:50 UTC on 29 January 2019 at 37.69oN 20.61oE exhibiting55

magnitude threshold invariance. Here, ML(ATH) stands for the local magnitude reported by the56

Institute of Geodynamics of the National Observatory of Athens. A week later, i.e., at 02:26 UTC on57

5 February 2019, an Mw5.4 EQ occurred with an epicenter at 38.98oN 20.59oE lying very close to the58

NorthWestern edge of the PIR selectivity map, see Figure 1. The corresponding natural time analysis59

of the seismicity within the PAT selectivity map (see the black rectangle in Figure 1) after the SES60

activity on 3 January 2019 has shown that upon the occcurrence of the ML(ATH)=3.2 EQ at 06:53 UTC61

on 23 March 2019 at 37.69oN 20.61oE the condition κ1 = 0.070 has been met for various magnitude62

thresholds (see Fig.9 of [35]). Interestingly, almost a week later the Mw=5.3 EQ of Figure 1 occurred at63

10:46 UTC on 30 March 2019 with an epicenter at 38.35oN 22.29oE lying inside the PAT selectivity map64

at a distance around 30km from the PAT measuring station.65

3. Discussion66

It is notable that the occurrence of the two EQs under study took place almost a week after67

the criticality condition κ1 = 0.070 has been met for various magnitude thresholds. This compares68

favorably with the time window of a few days up to one week already found from various SES69

activities in Greece, Japan and United States [2,4,18,36–39].70

4. Materials and Methods71

4.1. Natural Time Analysis (NTA)72

In a time series comprised of N individual events(e.g., electric pulses or EQs), the natural time[4,73

40–42] associated with the k-th event is given by χk = k/N. In NTA[4,40–42], the pair (χk, Qk) is74

studied, where Qk is proportional to the energy emitted during the k-th event. For example in the case75

of SES, Qk is proportional to the duration of each SES pulse[40,41], while for EQs it may be considered76

proportional to the seismic moment[40,42,43]. How the time series coming from a variety of complex77

systems are read in natural time can be seen in Fig. 1 of [5].78

The pair (χk, Qk) is studied by considering the normalized energy for the k-th event pk =

Qk/∑N
n=1 Qn, where pk can be also considered as a probability distribution[5,44]. In view of the

latter, the function[4,40–42,44]

Π(ω) =

∣∣∣∣∣ N

∑
=1

pk exp
(

iω
k
N

)∣∣∣∣∣
2

(1)
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provides information about the probability distribution pk when ω → 0. Expanding Eq.(1) around
ω = 0, we obtain that Π(ω) = 1− κ1ω2 + . . . , where κ1 stands for the variance of natural time

κ1 ≡
N

∑
k=1

χ2
k pk −

(
N

∑
k=1

χk pk

)2

, (2)

with respect to the distribution pk. When Qk are independent and identically distributed random
variables, we have that pk → 1/N. This is the case of the so-called[4,45,46] ‘uniform’ distribution
leading to a value of κ1 equal to κu = 1/12 ≈ 0.083. For critical systems, Varotsos et al. [47] have shown
that

κ1 ≈ 0.07 (3)

for a variety of systems approaching criticality. Thus, κ1 reaches the value of 0.070 for a critical system79

or 0.083 for a system exhibiting stationary or quasi-periodic behavior[5].80

Apart from κ1, another useful quantity in NTA[4,5] is the entropy S given by[40,46,48]

S = 〈χ ln χ〉 − 〈χ〉 ln〈χ〉, (4)

where the brackets 〈. . .〉
(
≡ ∑N

k=1 . . . pk

)
denote averages with respect to the distribution pk. The81

entropy S is a dynamic entropy that exhibits[49] positivity, concavity and Lesche[50,51] experimental82

stability. When Qk are independent and identically distributed random variables, S reaches[48] the83

value Su ≡ ln 2
2 −

1
4 ≈ 0.0966 that corresponds to the aforementioned ‘uniform’ distribution. For SES,84

it has been experimentally observed[4,49] that SSES
<∼ Su. Upon reversing the time arrow and hence85

applying the time reversal operator T to pk, i.e., T pk = pN−k+1, the value of S changes to a value S−.86

Again, it has been experimentally observed[4,49] that for SES activities: S− <∼ Su.87

5. Conclusions88

The two strongest earthquakes that occurred in Greece since 1 January 2019, i.e., the Mw5.489

earthquake close to Preveza city in Western Greece on 5 February and the Mw5.3 earthquake 50km90

East of Patras on 30 March have been preceded by Seismic Electric Signals (SES) activities that have91

been identified as such before the earthquake occurrences[14].92

The occurrence times of these two earthquakes can be approached by analyzing in natural time93

the seismicity subsequent to the SES activities within the selectivity maps of the corresponding VAN94

stations that recorded the SES activities.95
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ATH Athens
EQ Earthquake
ML(ATH) Local EQ magnitude reported by the Institute of Geodynamics of the National Observatory of Athens
Mw Moment magnitude
NTA Natural time analysis
PAT Patras SES measuring station
PIR Pirgos SES measuring station
SES Seismic Electric Signals
VAN Varotsos Alexopoulos Nomikos
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