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Abstract: Salt weathering is the main erosive process affecting diverse geological materials in 

historical and contemporary structures and can also contribute to visual changes by surface 

crystallization. The main goal of the present paper is to assess publications concerning the study of 

salt weathering of natural stone considering the main approaches (laboratory tests and field 

observations). Our focus will be on rock types other than sedimentary carbonate rocks and 

sandstones (which are the most studied rocks both in laboratory and field studies). Granite and 

pyroclastic rocks are dominant in the studied set. Also deserves highlight (for scientific reasons) 

the scarcity of studies regarding foliated rocks and marble. 
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1. Introduction 

Soluble salts can contribute to visual alteration of surfaces of diverse types of rocks used as 

stones due to surface crystallization and they are the main erosive agent of these materials. 

Salt weathering can affect stone elements on diverse locations, not being limited to coastal 

areas given that there are diverse other sources besides seawater (for a classical review see Arnold 

& Zehnder[1]). It can affect historical heritage and recent structures (as in Alves et al.[2]). 

In this paper we will attempt to assess the situation in terms of approaches to salt weathering 

of stones, considering simulation studies (by exposition and laboratory tests) and field studies. In 

order to have a manageable set of works to analyze in the framework of the present work, we will 

analyze publications on this theme published in or after 2010 (focusing on studies of the present 

decade) found in the Scopus database (this will leave out many publications, including several of 

our own!). Only cases with actual natural stone will be considered. 

2. Analysis of publications 

We found few studies concerning controlled exposition to environmental conditions: one with 

volcanic rocks in Japan (Seiki et al.[3]) and another one regarding dolostones in Spain (Cámara et 

al.[4]). 

A large majority of the studies found concerned limestones (we will also include here 

dolostones) and sandstones and there are many publications that will not be discussed specifically 

here, besides those that are referred in the context of methodological issues (laboratory studies with 

these rocks alone amounted to around fifty). 

Laboratory studies are, in general, more frequent than field studies (around a half higher), 

with diverse types of salts and weathering conditions (for recent reviews on laboratory salt 
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weathering testing see Alves et al.[5], Lubelli et al.[6]). In the selected set, the main rock types are 

volcanic rocks (Seiki et al.[3]; Yu & Oguchi[7]; Yavuz[8]; López-Doncel et al.[9]; Germinario et 

al.[10]; Özşen et al.[11]; Çelik & Aygün[12]; Martínez-Martínez et al.[13]; Pötzl et al.[14]; Sato & 

Hattanji[15]; Zalooli et al.[16]), being dominated by studies of pyroclastic rocks, and plutonic rocks 

(Cámara et al.[4]; Yu & Oguchi[7]; López-Arce et al.[17]; Silva et al.[18]; Vázquez et al.[19]; Cerrillo 

et al.[20]; Martins et al.[21]; Sousa et al.[22]; Vázquez-Nion et al.[23]; Graus et al.[24]) with granite 

being dominant in this subset. In our present review we found fewer publications concerning 

laboratory testing of metamorphic rocks; most of them studying marbles (Vázquez et al.[19]; 

Martínez-Martínez et al.[25]; Navarro et al.[26]; Vazquez et al.[27]) with one studying gneiss 

(Ricardo et al.[28]) but none in slates or schists. There are several questions connected with these 

laboratory studies in terms of relations to real conditions, namely in terms of scale (which might 

affect their potential for assessing the effects of rock heterogeneity). The diversity of testing 

conditions also hinders meta-analysis of results, tending to create a certain “case study” framework. 

Under field studies we will consider works dedicated to the study of human objects that have 

been subjected to actual weathering conditions (not laboratory simulations). These studies have 

focused in general in the distribution of salt occurrences and associated decay forms which can 

include 2D-3D documentation of the structure using laser scanner and photogrammetry (Bala'awi 

et al.[29]). These assessments can contribute to evaluate the effect of time by comparison of stone 

decay with age of emplacement (Přikryl et al.[30]). 

Field studies can include the performance of diverse tests on site such as the use of Drilling 

Resistance Measurement System (Modestou et al.[30]), and many generally non-destructive 

procedures such as measurements of moisture content and water absorption (Zoghlami et al.[32]), 

Schmidt rebound test (Boumezbeur et al.[33]), ultrasonic velocity propagation (Zoghlami et al.[32]; 

Zezza[34]), rock Surface Micro-topography (Kamh & Koltuk[35]), image analyses (Zezza[34]; Ruiz-

Agudo et al.[36]), colorimetric studies (Columbu et al.[37]). 

Field studies also frequently include the characterization of the salts, namely in terms of types, 

amounts and sources, using diverse mineralogical and chemical techniques, including advanced 

analytical techniques such as isotopic analyses in the search for the sources of the salts (Hosono et 

al.[38]; Siedel et al.[39]; Rivas et al.[40]; Kloppmann et al.[41]). The involved sampling mostly 

consist of collecting salt concentrations (efflorescences) and loose stone portions (which are 

considered as already compromised by the action of the soluble salts) but can include contact by 

extraction by paper pulp poultices (Egartner & Sass[42]) and more invasive procedures such as 

microdrilling (Ruiz-Agudo et al.[36]; Siedel et al.[39]). There are some cases where it was possible to 

collect laboratory specimens from discarded blocks (but these are rare situations that generally 

cannot be replicated for other study places so they will not be specifically considered here).  

In the case of field studies we found some more balance between the studied rocks (of course 

excluding limestones and sandstones). Nonetheless, there is some predominance of igneous rocks, 

clearly dominated by granites (Sousa et al.[22]; Rivas et al.[40]; Silva Hermo et al.[43]; Warke et 

al.[44]; Costa[45]; Pozo-Antonio et al.[46]), followed by volcanic rocks (Seiki et al.[3]; Columbu et 

al.[37]; Antonelli et al.[47]). But we also found studies of gabbros (Matović et al.[48]) and diorites 

(Bader et al.[49]). 

In terms of metamorphic rocks we found studies of slates (Cann[50]), schists (Peñas Castejón et 

al.[51]), marbles (Zezza[34]; Antonelli et al.[47]) and gneiss (Küng & Zehnder[52]; da Conceição 

Ribeiro et al.[53]; Gaylarde et al.[54]). 

These field studies focused on real anthropogenic objects of stone but they suffer from the 

“case study” stigma (they concern a limited set of rocks under conditions of a given place) and 

furthermore, there is insufficient historical information in terms of these materials and conditions. 

Some papers include field and laboratory studies. We can highlight in relation to this the 

publication by Martínez-Martínez et al.[55] concerning a study of limestones in Spain, which based 

in the comparison of laboratory and field studies presents a proposal of equivalence in terms of 

time. 
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3. Final considerations 

This review highlight the predominance of limestones and sandstones in terms of studies of 

salt weathering, while in a kind of second level are studies concerning plutonic and pyroclastic 

rocks. The incidence of laboratory studies of salt weathering concerning rock types seems to be in 

part related to the relevance of those rock types in terms of cultural heritage, which might explain 

the scarcity of studies including slates and schist but certainly will not explain the few studies with 

marbles. Hence, the perceived susceptibility of stone types also seems to influence the selection of 

stones for these studies (this seems a more likely explanation for the relatively scarcity of studies 

considering marbles). 

But this situation can leave out some issues with scientific relevance in terms of understanding 

the relation between petrographic features and salt weathering processes such as the influence of 

anisotropy planes (which can be specially marked in some metapelitic rocks, depending on their 

characteristics) and heterogeneity, which can be significant in marbles. One can question the 

usefulness of laboratory testing of marble heterogeneity without previous indication from field. 

This indicates a particular interesting case in terms of the problem-situation concerning salt 

weathering of stones: the special value of field observations that show the effects of salts in 

heterogeneous marble stones. 

The diversity of procedures for laboratory salt weathering constitutes an obstacle to the meta-

analysis of results and the definition of universal trends for salt weathering susceptibility. 
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