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Abstract: Information related to the impact of wildfire disturbances on ecosystems is of paramount 10 
interest to account for environmental loss, to plan strategies for facilitating ecosystem restoration 11 
and to monitor the dynamics of vegetation restoration. Phenological metrics can represent a good 12 
candidate to monitor and quantify vegetation recovery after natural hazards like wildfire 13 
disturbances. Satellite observations have been demonstrated to be a suitable tool for wildfire 14 
disturbed areas monitoring, allowing both the identification of burned areas and the monitoring of 15 
vegetation recovery. This research study aims to identify post-fire vegetation restoration dynamics 16 
for the area surrounding Naples (Italy), affected by severe wildfires events in 2017. Sentinel-2 17 
satellite data were used to extract phenological metrics from the estimated Leaf Area Index (LAI), 18 
and related such metrics to environmental variables, in order to evaluate the vegetation restoration 19 
and landslide susceptibility for different land use classes. 20 
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1. Introduction 24 

Wildfires represent one of the major agent of change as far as forest ecosystems are concerned. 25 
These natural hazards are monitored and studied at different stages, exploiting many and innovative 26 
tools. For example, post-fire studies are mainly targeted in quantify the impact of wildfire events on 27 
forests and monitor the recovery of natural environments. The study of post-fire vegetation 28 
restoration is of great importance for decision makers and landscape planners, as it can provide useful 29 
information to update landscape vulnerability maps, monitor forest recovery processes and identify 30 
forest repopulation areas.  31 

Besides being natural hazards, wildfires could determine the reduction of vegetated surface and 32 
consequently reduce the effect of soil protection provided by the tree root system triggering therefore 33 
the possibility of landslides activation. Proper evaluation of post-fire vegetation restoration should 34 
not exclusively rely on fire severity and post-fire conditions, but also consider the plant conditions 35 
before the wildfire occurrence. 36 

In this contest, satellite remote sensing represents a time- and cost-effective tool to monitor post-37 
fire vegetation dynamics, especially over large areas. In particular, the Sentinel-2 MSI sensors, 38 
represents a concrete and available opportunity ho access free of charge data, featuring 39 
unprecedented trade-off in spatio-temporal resolutions (10-60 m pixel size and 5-days revisit time). 40 
represents a great occasion of improvement on such topic. 41 
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Objective of this contribution is to identify and characterize post-fire vegetation restoration 42 
dynamics for the study area surrounding Naples (Italy) using Leaf Area Index (LAI) generated from 43 
Sentinel-2 satellite data. The study case was interested by severe wildfire events during summer 2017 44 
[1]. Specific objectives are: (i) identify representative trajectories of vegetation restoration for different 45 
land use classes and (ii) evaluate the land use vulnerability (e.g. landslide susceptibility) from 46 
identified restoration dynamics. 47 

2. Materials and Methods  48 

A database of 218 Sentinel-2 A and B acquisitions was processed in order to produce smoothed 49 
temporal series of LAI values for the period 2016-2018. Sentinel-2 L2A data atmospherically corrected 50 
using the MACCS-ATCOR Joint Algorithm (MAJA) [2] and distributed by Theia in MUSCATE format 51 
were downloaded and used for the analysis. All the spectral bands contained in the Sentinel-2 L2A 52 
product were first masked from cloud contaminated data and successively resampled to a 20 m 53 
spatial resolution according to the procedure described in [3]. Later, the biophysical processor [4] 54 
available in SNAP software was used to compute leaf area index (LAI) and multitemporal LAI 55 
observations stacked in a multi-dimensional datacube, after applying an image co-registration step 56 
[3]. Finally LAI time series were first smoothed using a Whittaker approach [5], to avoid the residual 57 
noise rate affecting time series due to cloud contamination, and secondly masked using a reference 58 
burned area map [3].  59 

 60 
Figure 1. Post-fire dLAI distribution aggregated by the month of wildfire occurrence in 2017. 61 
 62 
During the time series analyses phase, each burned area was considered as a single Region of 63 

Interest (ROI) and a used to compute phenological metrics from LAI, for the pre-fire (year 2016) and 64 
post-fire (year 2018) periods. Phenological metrics, specifically the peak LAI and the seasonal 65 
cumulated value were computed from LAI in the time period 01 March - 30 September, and divided 66 
by the number of observation days in order to obtain thedaily average LAI value of the smoothed 67 



The 3rd International Electronic Conference on Remote Sensing (ECRS 2019), 22 May–5 June 2019;  
Sciforum Electronic Conference Series, Vol. 3, 2019 

 

3 

 

time series. The 2012 Corine Land Cover (CLC) thematic map, was used to aggregate time signatures 68 
according the land cover types. The difference Leaf Area Index (dLAI) phenological metric, was 69 
finally computed subtracting the seasonal cumulated value of 2018 to the seasonal cumulated value 70 
of 2016, divided by the number of observation days. 71 

Successively, dLAI values were compared against already available topographic and landslides 72 
hazard maps, in order to qualitatively investigate the environmental drivers related to specific fire 73 
vegetation restoration processes. Italian national landslide hazard maps (Piani di Assetto 74 
Idrogeologico, PAI [6,7]) represents the hazard in 5 PAI classes: 0=Controlled area; 1=Moderate; 75 
2=Medium; 3=High; 4=Very High. 76 

3. Results and discussion 77 

During year 2017 wildfire events mainly occurred in July (45.4%) and August (37.7%), mostly in 78 
areas of very high landslide hazard (PAI 4 and PAI 3 classes representative for more than 43.15% the 79 
analized LAI time series). 80 

Wildfires occurred during spring and early summer resulted in a lower dLAI (Figure 1), 81 
suggesting that vegetation had the time to start the restoration process before the end of the growing 82 
season. An hypothesis to explain the lower values of dLAI resulted for May is the presence of high 83 
residuals (dry leaves or branches) as heritage of the previous season, that still has not started to be 84 
part of natural degradation processes due to already chilly temperatures and that represents ready-85 
to-burn biomass in case of fire events. Incrementing therefore fire severity and damage, constraining 86 
therefore the activities of post fire vegetation regrowth in the successive season. Similarly, fire events 87 
taking place in autumn result intense (lower dLAI values) due to the higher presence of dry biomass 88 
at the ground level. 89 

The most represented land cover classes were “transitional woodland-shrubs” (CLC code 324 - 90 
32,48%), “natural grasslands” (CLC code 321 - 27,87%) and “broad-leaved forests” (CLC code 311 - 91 
16,16%) (Table 1). Among those, the faster post fire vegetation regrowth dynamic was observed for 92 
natural grasslands (dLAI= -0.2), followed by woodland-shrubs (dLAI= -0.3) and broad-leaved forests 93 
(dLAI= -0.5) (Figure 2). 94 

Table 1. Statistics on the distribution of burned pixels for the various Corine Land Cover 2012 95 
classes. 96 

CLC 

CODE Samples % Description 

223 5047 3.45 Olive groves 

242 2161 1.48 Complex cultivation patterns 

243 3160 2.16 
Land principally occupied by agriculture with significant 

areas of natural vegetation 

311 23629 16.16 Broad-leaved forest 

312 562 0.38 Coniferous fores 

313 3582 2.45 Mixed forest 

321 40753 27.87 Natural grasslands 

323 8887 6.08 Sclerophyllous vegetation 

324 47495 32.48 Transitional woodland-shrub 

333 4189 2.86 Sparsely vegetated area 

 97 
Figure 3 (left panels) shows average LAI time series profiles representative for specific land use 98 

classes along the pre fire (2016) fire (2017) and post fire (2018) 3-years-period. A well marked decrease 99 
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in LAI values can be easily appreciated in 2017 due to fire events in the three selected land use classes 100 
(panel a, c and e). Faster restoration processes, with lower dLAI values, was found for the classes 101 
corresponding to medium and moderate landslides hazards, suggesting that the restoration 102 
dynamics are slower in areas with higher landslides susceptibility (Figure 3). 103 
No significant relation between vegetation recovery and terrain slope could be detected one year after 104 
wildfire occurrence. 105 
 106 

 107 
Figure 2. Distribution of dLAI values for the various Corine Land Cover 2012 classes 108 

corresponding to burned area pixels. 109 
 110 

4. Conclusions  111 

The exploitation of biophysiacal indicators derived from Sentinel-2 satellite observations 112 
demonstrated to be a suitable tool to identify, describe and monitor vegetation recovery in wildfire 113 
affected areas. Phenological metrics computed from multitemporal LAI series allowed to depict and 114 
interpret post firerestoration dynamics featuring various land cover types. A faster restoration of 115 
natural grasslands ecosystems was found, when compared against the transitional woodland-shrubs 116 
and broad-leaved forests. Areas corresponding to medium and moderate landslides hazard classes 117 
showed faster vegetation regrowth, suggesting that the restoration dynamics are slower in areas with 118 
higher landslides susceptibility. 119 

Future perspectives of this research study lies in the development of automatic approaches to 120 
classify Sentinel-2 time series and operatively derive map of vegetation restoration typologies over 121 
burn-affected areas. For example, the application of advanced classification algorithms, as 122 
Convolutional Neural Networks (CNNs), Random Forest (RF) or Support Vector Machines (SVM) 123 
should be tested and compared each other in order to identify which of those could better cope with 124 
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the experimental case study, and moreover, benchmarched with well known algorithm (e. g. 125 
maximum likelihood) in order to appreciate the added value carried by state-of-the art classifiers. 126 

 127 
 128 

 129 

Figure 3. (a) Multitemporal series of LAI for burned area pixels corresponding to CLC class 311; (b) 130 
Distribution of dLAI values over the different PAI classes for CLC class 311; (c) Multitemporal series 131 
of LAI for burned area pixels corresponding to CLC class 321; (d) Distribution of dLAI values over 132 
the different PAI classes for CLC class 321; (e) Multitemporal series of LAI for burned area pixels 133 
corresponding to CLC class 324; (f) Distribution of dLAI values over the different PAI classes for CLC 134 
class 324. 135 

 136 
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