ECRS 2019

3rd International Electronic Conference on Remote Sensing

22 May – 5 June 2019, Chaired by Dr. Qi Wang

Sponsored by:

F remote sensing

Estimation of sunflower yields at a decametric spatial scale A statistical approach based on multi-temporal satellite images

Remy Fieuzal¹, Vincent Bustillo^{1,2}, David Collado² and Gerard Dedieu¹

¹Centre d'Études de la BIOsphère (CESBIO), Université de Toulouse, CNES/CNRS/INRA/IRD/UPS, Toulouse, France remy.fieuzal@cesbio.cnes.fr; gerard.dedieu@cesbio.cnes.fr
²IUT Paul Sabatier, 24 rue d'Embaquès, Auch, France vincent.bustillo@iut-tlse3.fr; david.collado@univ-tlse3.fr

Global issues

Climate change (increase of mean temperature, modification of precipitation patterns) → Effects on agriculture? Population growth (9,3 milliards in 2050 ?) → Increase of food needs...

➔ Accurate managements need to combine sustainability of resources and sufficient level of production to meet the food needs...

Satellite missions at high spatial and temporal resolutions

On going microwave missions: TerraSAR-X, Tandem-X, Radarsat-2, COSMO-SkyMed, Sentinel-1a/b, Alos-2... **On going optical missions:** Landsat, Sentinel-2, Venμs, Pléiades... **Coming soon :** TerraSAR-X2, Radarsat Constellation, Tandem-L...

• Sunflower worldwide – From 1961 to 2016 (FAOSTAT)

Distribution of the world production in 2010

5 countries account for 58% of the total production Ukraine, Russia, China, Argentina and France

Objective \rightarrow Estimation of the sunflower yields all along the agricultural season (updating estimates after each satellite acquisition) ⁴

Introduction Experiment

• Study area • Satellite Data • Ground Measurements

orady area

• Meteorological conditions are steered by a **temperate climate**

 Surface dedicated to agriculture: 56,8% seasonal crops 32,1% grasslands 7,9% forests 2,4% urban areas 0,8% lakes

→ High spatial and temporal dynamics of the surface states

• The approach consists in using multi-temporal optical acquisitions

Agricultural season

Optical satellite images

Years	2016		2017
Satellites	Sentinel-2	Landsat-8	Sentinel-2
Dates (M-D)	05-21;06-20	04-15 ; 06-09 ; 07-04	04-06 ; 05-06 ; 05-16
	07-10 ; 07-30	08-12 ; 09-06 ; 09-13	05-26 ; 06-05 ; 06-25
			07-05 ; 08-04 ; 08-14
			08-24 ; 09-13

→ Use of 6 reflectances: blue, green, red, NIR, SWIR-1/2
 → NDVI derived from red and NIR reflectances

Measurements of sunflower yields

Descriptive statistics by field (μ , σ) Agricultural seasons 2016 et 2017 (12 et 10 fields)

→ Mean yield:

- 2016 → 25.1 q.ha⁻¹ (CV 18 to 36%)
- 2017 → 21.5 q.ha⁻¹ (CV 18 to 31%)

• Test of different ratio of data for Cal/Val Using all the images during the agricultural season

→ Statistics for the 50-50% ratio:

- 2016 \rightarrow R²=**0.59/0.64**, RMSE=**4.6/4.5** q.ha⁻¹ for NDVI or 6 bands,

- 2017 \rightarrow R²=0.66/0.67, RMSE=3.3/3.3 q.ha⁻¹ for NDVI or 6 bands ⁸

• Forecast of yield throughout the agricultural season Using an increasing number of successive images

Statistic performances saturate from flowering
 Early accurate estimates: start of July...

• Forecast of yield throughout the agricultural season Using an increasing number of successive images

Statistic performances saturate from flow
 Early accurate estimates: start of July...

- 10 - 5

537100

Observed yields

• The statistical approach based on multi-temporal optical images allows the estimation of crop yields with acceptable performances at a decametric spatial scale.

 \rightarrow This approach is in the framework of the on-going generation of satellite mission and must be extended adding other satellite data...

• The proposed approach provides a useful tool for the monitoring of sunflower cultivated in southwestern France.

 \rightarrow The approach must be extended to other crops...

• Interesting early accurate estimation of yield are observed for sunflower, whatever the considered year.

 \rightarrow The approach must be confirmed analyzing several other agricultural seasons...

• Those promising results are consistent with previous studies.

Best performances and satellite configurations throughout the agricultural season of corn

Just before harvest

For more details...

Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks R. Fieuzal, C. Marais Sicre and F. Baup - International Journal of Applied Earth Observation and Geoinformation – 2017 Forecast of wheat yield throughout the agricultural season using optical and radar satellite images R. Fieuzal and F. Baup - International Journal of Applied Earth Observation and Geoinformation - 2017

eld in hartl on day 174 using red and C-Hi

leid (p.ho-1) on day 273 using (

64-51

65-H

80-96

24. 10

Yield estimates at the field scale...

Approach applied to soybean and sunflower

100

150

200

Day of Year 2010

300

Assimilation of LAI and Dry Biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield - J. Betbeder, R. Fieuzal and F. Baup - IEEE Jour. of Sel. Top. in App. Earth Obs. and Remote Sensing – 2016 Estimation of sunflower yield using a simplified agro-meteorological model controlled by multi-spectral satellite data 13 (optical or radar) - R. Fieuzal, C. Marais-Sicre and F. Baup - IEEE Jour. of Sel. Top. in App. Earth Obs. and Remote Sensing - 2017

[m² m⁻²]

₹

Thank you for your attention

ECRS 2019

3rd International Electronic Conference on Remote Sensing

22 May – 5 June 2019, Chaired by Dr. Qi Wang

Sponsored by:

