

SAMA-VTOL Aerial Image Dataset (SVAID): A New UAV Image

Dataset for Advanced Remote Sensing Research

Abbas Ebrahimi

Aerospace Engineering Department, Sharif University of Technology, Tehran, Iran

Mohammad Reza Bayanlou

Aerospace Engineering Department, Sharif University of Technology, Tehran, Iran

Mehdi Khoshboresh Masouleh

School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

ebrahimi_a@sharif.ir; bayanlom@gmail.com; m.khoshboresh@ut.ac.ir

1. Introduction

- Low-altitude remote sensing or aerial photogrammetry based on unmanned aerial vehicle (UAV) has been widely adopted in many hot fields of science research (i.e. 3D textured modeling of cultural heritage objects and places, affordable and accurate mapping, multitemporal change detection, agricultural planning, etc.), and it has become a key geospatial data acquisition system [1–3].
- Preparing UAV image datasets and free data sharing, plays an important role in geospatial data analysis and algorithms development [4]. UAV image dataset can be costly due to involvement of the special personnel (i.e. remote sensing specialist), use of expensive equipment (i.e. UAV platform), and providing optimal flight conditions (i.e. weather conditions). Therefore, TAREQH Corporation has produced a dataset with use of a new platform, called SAMA-VTOL aerial image dataset (SVAID). SVAID is a high-quality UAV image dataset for advanced remote sensing research with focused on high-precision orthophoto generation and 3D building modeling. Summarizing information about SVAID characteristics is provided in the Table 1.

1. Introduction

Table 1. SVAID characteristics.

Creating by	TAREQH Corporation		
The section of the section	remote sensing [5], photogrammetry [6], geospatial data		
Thematic categories	analysis [7], computer vision [8], machine learning [9]		
Research sub-fields	3D building modeling, point cloud processing, image		
	matching, digital elevation/surface model processing		
Aircraft	SAMA-VTOL (Vertical Takeoff and Landing and fixed-wing)		
Sensor type	Fujifilm X-A3		
Image size (pixel)	6000×4000		
Focal length (cm)	27		
Ground sampling distance (mm)	2.5		
Flying altitude (m)	179		
Date	7 Sep 2018		
Location	Esfahan province, Iran		

2.1. Original RGB UAV Images

The original RGB UAV images were captured by SAMA-VTOL are provided for case study. These dataset consist of 120 rural/urban scene images with 80% forward overlap and 60% side overlap, where the SVAID uses the WGS 84 (EPSG::4326) coordinate system, as do most GNSS units. A data inventory is provided (Supplementary Material, File 1). Figure 1 shows the study site in the various landscape types with six samples of datasets collected from Esfahan province.

2. Data Description

2.1. Original RGB UAV Images

Figure 1. Various landscape types in SVAID. (a-b) vegetation; (c-d) residential; (e-f) commercial.

2.2. Coordinates of Center of Images (CCIs)

The coordinates of the image center points are provided for each SVAID's images by GNSS-PPK (Post Processing Kinematic) system on the SAMA-VTOL. Figure 2 illustrates the information available in txt file (Supplementary Material, File 2) with each column description given as follows:

First col. Image No: Assigning a unique ID for each image.

Second col. Lat: Latitude.

Third col. Lon: Longitude.

Fourth col. Elevation: Altitude.

2.2. Coordinates of Center of Images (CCIs)

Image No	Lat	Lon	Elevation
DSCF3997.JPG	32,569856020	51, 563181692	1775, 350200
DSCF 3998, JPG	32, 570036768	51, 563203482	1776.844800
DSCF 3999, JPG	32, 570236151	51, 563227297	1776, 212300
DSCF4001.JPG	32, 570434552	51,563244481	1775.045500
DSCF4002.JPG	32, 570638338	51, 563251703	1773,949300
DSCF4003. JPG	32, 570840151	51, 563255020	1772.807700
DSCF4004, JPG	32, 571026857	51,563266199	1771.325600
DSCF4005.JPG	32.571219630	51.563280763	1771.280000
DSCF4006. JPG	32.571406472	51.563306081	1772.832400
DSCF4007.JPG	32.571588704	51.563338157	1773.732600
DSCF4008.JPG	32.571775757	51.563366714	1773.895900
DSCF4009.JPG	32.571964175	51.563388386	1773.988700
DSCF4010.JPG	32.572148845	51.563410915	1773.503300
DSCF4011.JPG	32.572341801	51.563431436	1772.751000
DSCF4012.JPG	32.572556434	51.563462491	1772.014400
DSCF4013.JPG	32.572763995	51.563495118	1771.239100
DSCF4014.JPG	32.572958593	51.563501881	1769.858800
DSCF4015.JPG	32.573191848	51.563493688	1768.001600
DSCF4016.JPG	32.573378786	51.563488809	1767.366300
DSCF4017.JPG	32.573567147	51.563499388	1767.827700
DSCF4018.JPG	32.573828168	51.564180038	1772.572300
DSCF4019.JPG	32.573640195	51.564179017	1772.436900
DSCF4020. JPG	32.573412921	51.564191257	1772.065800
DSCF4021.JPG	32.573177688	51.564204457	1772.175200
DSCF4022.JPG	32.572981734	51.564208396	1773.341300
DSCF4023. JPG	32.572785616	51.564203689	1774.930300
DSCF4024.JPG	32.572591071	51.564189684	1775.418900
DSCF4025.JPG	32.572360798	51.564169034	1775.156200
DSCF4026. JPG	32.572164122	51.564148721	1774.697000
DSCF4027.JPG	32.571970795	51.564125436	1775.023600
DSCF4028.JPG	32.571759717	51.564100241	1775.183200

Figure 2. Sample CCIs in txt file.

3. Methods

3.1. Data Collection

The research site is part of the Esfahan province, Iran (Figure 3). The land cover consists of agricultural land and urban areas.

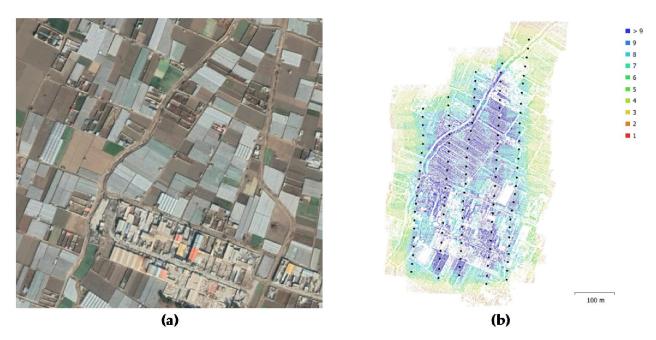


Figure 3. Google Earth imagery of the study area. (a) Research site; (b) Camera locations and image overlap.

3.1. Data Collection

In this work, SAMA-VTOL was equipped with a Fujifilm X-A3 camera to acquire images (Figure 4). Additionally, the Agisoft Metashape software was used to analyzing images and produce dense point clouds, digital surface model (DSM) and orthoimage for evaluating SVAID quality and quantity and QGroundControl software was used to mission planning and flight control.

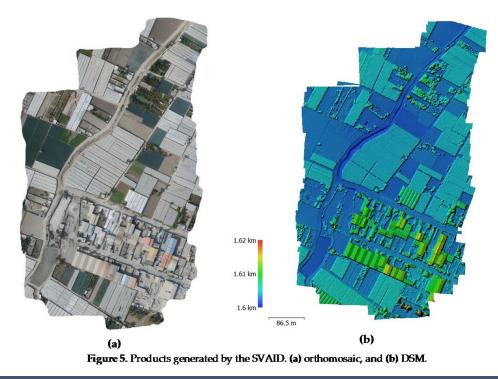


Figure 4. SAMA-VTOL.

3.2. Data Processing

The data processing, includes automatic aerial triangulation based bundle block adjustment with camera calibration and model generation by Agisoft Metashape. Figure 5 shows the results of the DSM and orthophoto from the SVAID.

References

- 1. Liu, Y.; Zheng, X.; Ai, G.; Zhang, Y.; Zuo, Y. Generating a High-Precision True Digital Orthophoto Map Based on UAV Images. *ISPRS Int. J. Geo-Inf.* **2018**, *7*, 333.
- 2. Akturk, E.; Altunel, A.O. Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. *Measurement* **2019**, *136*, 382–386.
- 3. Kalacska, M.; Lucanus, O.; Sousa, L.; Vieira, T.; Arroyo-Mora, J.P. UAV-Based 3D Point Clouds of Freshwater Fish Habitats, Xingu River Basin, Brazil. *Data* **2019**, *4*, 9.
- 4. Hughes, L.H.; Streicher, S.; Chuprikova, E.; Du Preez, J. A Cluster Graph Approach to Land Cover Classification Boosting. *Data* **2019**, *4*, 10.
- Mathews, A.J. A Practical UAV Remote Sensing Methodology to Generate Multispectral Orthophotos for Vineyards: Estimation of Spectral Reflectance Using Compact Digital Cameras. *Int. J. Appl. Geospatial Res. IJAGR* 2015, 6, 65–87.
- 6. Krause, S.; Sanders, T.G.M.; Mund, J.-P.; Greve, K. UAV-Based Photogrammetric Tree Height Measurement for Intensive Forest Monitoring. *Remote Sens.* **2019**, *11*, 758.
- 7. Papakonstantinou, A.; Topouzelis, K.; Pavlogeorgatos, G. Coastline Zones Identification and 3D Coastal Mapping Using UAV Spatial Data. *ISPRS Int. J. Geo-Inf.* **2016**, *5*, 75.
- 8. Carnie, R.; Walker, R.; Corke, P. Image processing algorithms for UAV "sense and avoid." In Proceedings of the Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.; 2006; pp. 2848–2853.
- 9. Masouleh, M.K.; Shah-Hosseini, R. Fusion of deep learning with adaptive bilateral filter for building outline extraction from remote sensing imagery. *J. Appl. Remote Sens.* **2018**, *12*, 1.