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Abstract 

 

The study was carried out to show 

how the Precautionary Principle is 

better applied with Machine 

Learning techniques. The 

development of Machine Learning 

techniques and the wider application 

for different disciplines, such as 

Biotechnology, Nanotechnology, 

and Science of Materials, has been 

increasing.1-13 Modelling and 

simulation techniques should be 

promoted for regulation assessment, 

taking into consideration the 

uncertainty of new compounds 

product of biotechnology and 

nanotechnology applications. 
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