

5th International Electronic Conference on Medicinal Chemistry

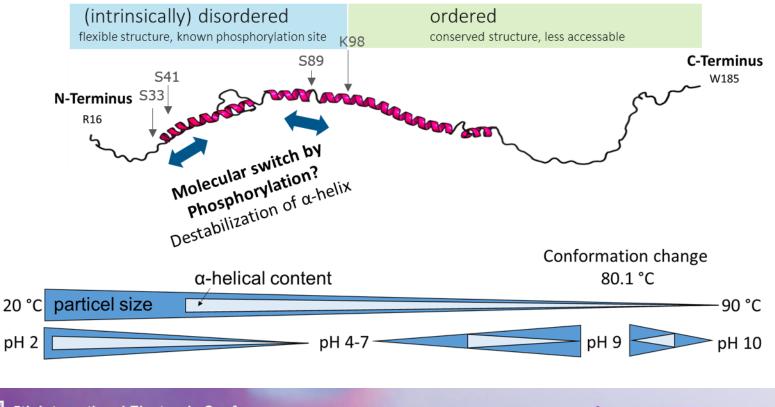
1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

Phosphorylation of breast-milk α_{s1}-casein induced conformational changes and abolished TLR4-agonisticity as well as formation of fibril structure

Thorsten Saenger ^{1,*}, Marten F. Schulte ¹, Fabian C. Herrmann ², Marius Patberg ¹, Stefan Vordenbäumen ³, Ellen Bleck ³, Matthias Schneider ³ and Joachim Jose ¹

¹ Westfälische Wilhelms-Universität, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Correnstr. 48, 48149 Münster, Germany.
 ² Westfälische Wilhelms-Universität, Institut für Pharmazeutische Biologie und Phytochemie, PharmaCampus, Correnstr. 48, 48149 Münster, Germany.
 ³ Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum, Poliklinik für Rheumatologie und Hiller Forschungszentrum Rheumatologie, Moorenstr. 5, 40225 Düsseldorf, Germany.

* Corresponding author: thorsten.saenger@uni-muenster.de



HEINRICH HEINE

Phosphorylation of breast-milk α_{s1} -casein induced conformational changes and abolished TLR4-agonisticity as well as formation of fibril structure

Graphical Abstract

sponsors.

pharmaceuticals

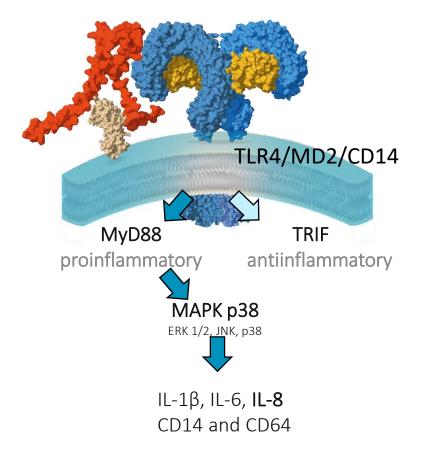
5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019 **Abstract:** Breast-milk α_{S1} -casein is a Toll-like receptor (TLR4) agonist which induced proinflammatory cytokine secretion. Phosphorylated α_{S1} -casein (P- α_{S1} -casein) is non-agonistic. The objective of this study was to analyze structural characteristics underlying these observations.

Recombinant α_{s1} -casein was shown to exist in two conformations, an α -helical TLR4agonistic conformation and a non-agonistic conformation with lower α helical and higher random coil content. TLR4-agonstic α_{s1} -casein conformation was found at a pH-range between 7.4 and 2. α_{s1} -Casein bound itself (KD-value: 2 μ M) formed large aggregates (between Ø 73 nm [pH7] and Ø 826.2 nm [pH2]). Using Thioflavin T assay and atomic force microscopy showed that α_{s1} -casein adopted fibril-like structure. P- α_{s1} -casein was observed in a less α helical conformation, not inducing IL-8 secretion. P- α_{s1} -casein bound itself stronger (KD-value: 0.5 μ M) than α_{s1} -casein and did not form fibrils.

In conclusion, TLR4-agonistic and non-agonistic conformations of α_{s1} -casein could be differentiated. It was demonstrated that human caseins are able to adopt fibril structure. These kind of structures are often disease related. We postulate, that phosphorylation could be a switch of two conformations regulating immunomodulatory effects of human α_{s1} -casein especially in immune system development.

Keywords: Breast milk; human α_{s1} -casein; TLR4 agonist; fibril structure, CK2.

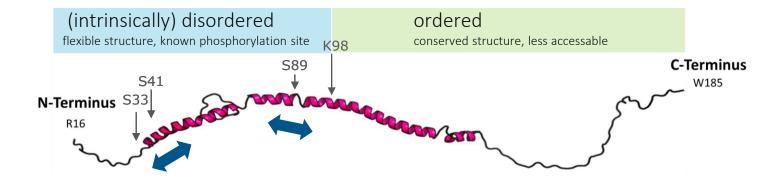
Human a_{s1}-casein

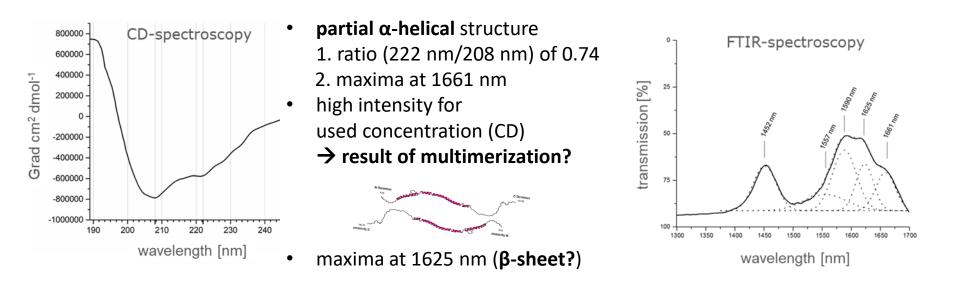

Expressed in:

- Breast- and prostate cancer
- Synovia of patients (arthritis)
- breast milk (functional food) transport of molecules, minerals induces life long IgG response
- > α_{s1} -casein bound TLR4-receptors
- In vitro phosphorylated α_{s1}-casein
 did not bind TLR4-receptors

Is there a structure-function relationship for α_{s_1} -casein activating TLR4?

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

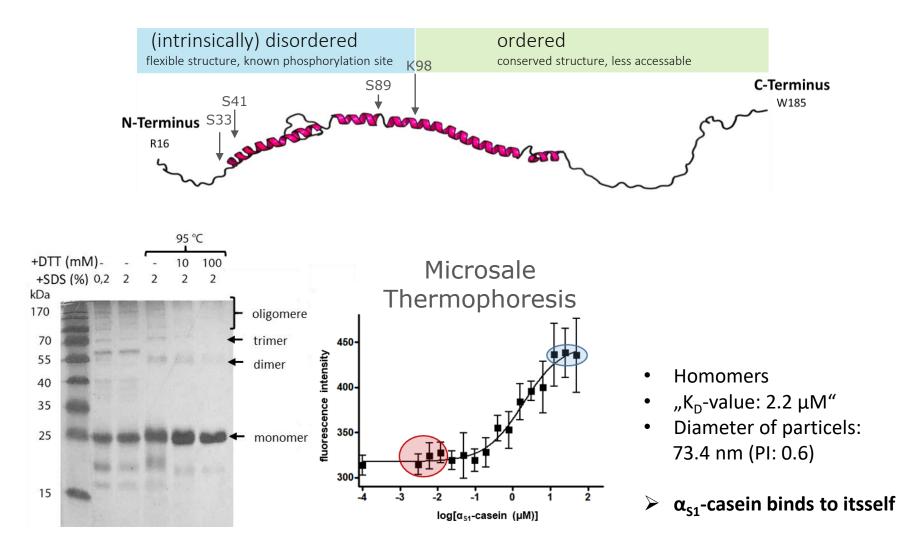

Phosphorylation of α_{s1} -casein abolished this.



pharmaceuticals

sponsors.

In silico predicted structure and in vitro analysis α_{s1} -casein

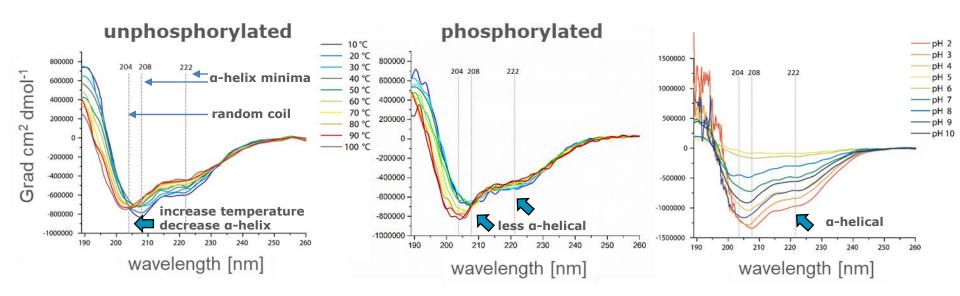


5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

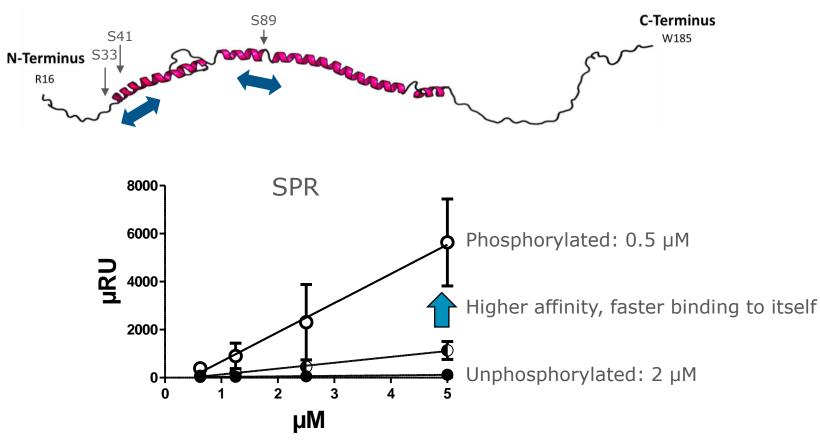
sponsors:



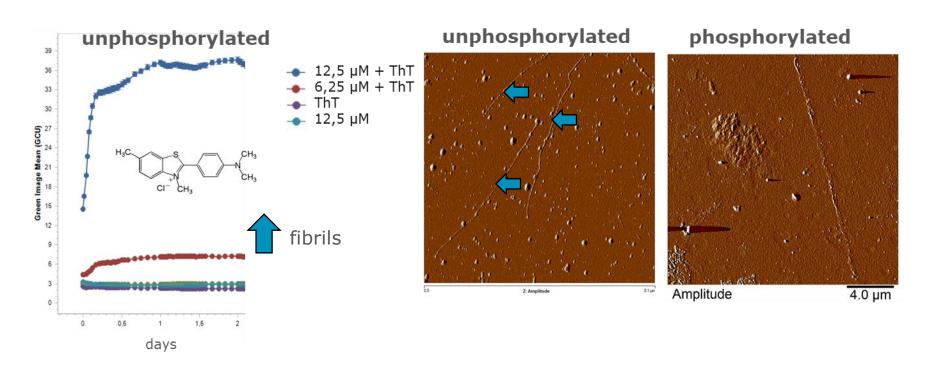
Correlation of α -helical structure and effects via TLR4

IL-8 sercretion via TLR4

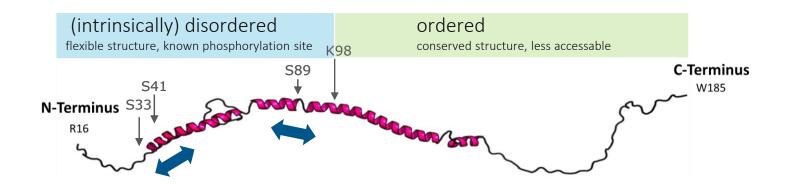
- RT, pH7: **yes**
- 95 °C: **no**
- Phosphorylation: no
- pH2: **yes**



> α_{S1} -casein had higher α -helical content at RT (pH7 and pH2) than phosphorylated and heated one



- Phosphorylation could be a mechanism to control multimerization
- Unphosphorylated: slower, structured
- Phosphorylated: faster, unstructured



- > Unphosphorylated α_{s1} -casein formed fibrils (shown by Thioflavin T Assay and AFM)
- > Phosphorylated α_{s1} -casein did not form fibrils, but aggregates.

Conclusions

- α_{s1} -casein was shown to have two conformations, an α -helical TLR4-agonistic and a nonagonistic conformation with lower α helical content.
- Phosphorylation of α_{s1} -casein as well as incubation at 80 °C led to the non-agonistic conformation.
- β -Sheets and aggregation allowed us to identify fibril-like structures of specifically for α_{S1} -casein by ThT-assay and AFM
- phosphorylation could be a switch between two conformations of α_{s1} -casein regulating immunomodulatory processes of the immune system

Acknowledgments

Thanks to all members of the Group of Joachim Jose

Financial support of Hiller Rheumatology Research Foundation and Hiller Research Center Rheumatology of Heinrich-Heine-University Düsseldorf

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

pharmaceuticals