

5th International Electronic Conference on Medicinal Chemistry

1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

Novel radiolabeled silicon rhodamine dyes for bimodal scintigraphic and optical imaging

Thines Kanagasundaram^{1,2*}, Carsten Sven Kramer¹, Eszter Boros³, Klaus Kopka¹

¹German Cancer Research Center, Division of Radiopharmaceutical Chemistry, Heidelberg, Germany; ²Heidelberg University, Department of Inorganic Chemistry, Heidelberg, Germany; ³Stony Brook University, Department of Chemistry, New York, United States of America.

* Corresponding author: t.kanagasundaram@dkfz-heidelberg.de

Novel radiolabeled silicon rhodamine dyes for bimodal scintigraphic and optical imaging

© B. Jang, S. Park, S. H. Kang, J. K. Kim, S. K. Kim, I. H. Kim, Y. Choi, *Quant. Imaging Med. Surg* 2012, 2, 1–11. © S. K. Lyons, E. Lim, A. O. Clermont, J. Dusich, L. Zhu, K. D. Campbell, R. J. Coffee, D. S. Grass, J. Hunter, T. Purchio, D. Jenkins, *Cancer Res*. 2006, 66, 4701–4707.

Abstract:

Radiolabeled fluorescent dyes are decisive for bimodal imaging and currently in demand for radio- and optical imaging. This powerful strategy enables the accurate differentiation of healthy and affected tumor tissues. The introduced small molecule based dyes are intended to be used for noninvasive PET and SPECT imaging (prestaging) followed by light-guided R0-tumor-resection.

Herein we describe the synthesis of novel radiolabeled near-infrared emitting silicon rhodamine dyes for optical- and scintigraphic imaging and fluorescence-guided surgery. Additionally the organic dyes are developed for sentinel-lymphnode detection (SNL).

The dyes were synthesized through copper(I)-catalyzed alkyne-azide [3+2]-cycloaddition with alkyne-functionalized biomolecules to receive respective 1,2,3-triazoles for complexing the prominent SPECT-radiometal technetium-99m or to introduce the chelator DOTA for the well-known gallium-68 PET-emitter. The fluorophores were characterized with NMR, mass spectrometry and optical properties were determined. These first-in-class dyes show promising optical properties such as high quantum yields up to 0.45 and high extinction coefficients in the range of charge transfer metal complexes (ca. 120.000 M⁻¹cm⁻¹). The subsequent conjugation of these dyes to the SPECT-compatible radiometal technetium-99m with the aim to elucidate their potential as sentinel lymph node detecting agents was successfully investigated and stability tests in aqueous solution were performed. Furthermore, a silicon rhodamine dye was coupled with a prominent biovector (PSMA-617 binding motif) which show high selective tumor enrichment in prostate-cancer cells. The radiolabeled silicon dyes are subject of current and upcoming biological evaluation.

Keywords: Cancer Treatment, Optical Imaging, Molecular Imaging, Si-rhodamines, CuAAC-chemistry

Introduction

Biologically relevant fluorescent dyes:

- Fluorescein dyes
- **BODIPY** dyes

Disadvantages: low solubility, lipophilicity, limited optical properties

 \rightarrow Requirements for biological applications: optical properties in NIR-region (600–950 nm), large stokes

shifts and quantum yields, high chemical and physical stability

J. O. Escobedo, O. Rusin, S. Lim, R. M. Strongin, Curr. Opin. Chem. Biol. 2010, 14, 64-70.

V. N. Belov, C. A. Wurm, V. P. Boyarskiy, S. Jakobs, S. W. Hell, Angew. Chem. Int. Ed. 2010, 49, 3520–3523.

C. Jinping, M. Masatoshi, S. Hiroshi, A. Osuka, Chem. Eur. J. 2009, 15, 5942–5949.

S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, Biomaterials 2011, 32, 7127-7138.

Introduction

V. N. Belov, C. A. Wurm, V. P. Boyarskiy, S. Jakobs, S. W. Hell, Angew. Chem. Int. Ed. 2010, 49, 3520-3523.

N. Butkevich, G. Y. Mitronova, S. C. Sidenstein, J. L. Klocke, D. Kamin, D. N. H. Meineke, E. D'Este, P.-T. Krämer, J. G. Danzl, V. N. Belov, S. W. Hell, Angew. Chem. Int. Ed. 2016, 55, 3290–3294.

T. Ikeno, T. Nagano, K. Hanaoka, Chem. Asian J. 2017, 12, 1435–1446.

Goal of the Project

 Synthesis of small molecule based radiotracers for scintigraphic imaging and fluorescence imaging-guided surgery of tumors and their metastases

	Scintigraphic imaging	Fluorescence imaging
advantages	whole body imaging high tissue penetration high sensitivity	high spatial resolution no radiation exposure
disadvantages	low spatial resolution radiation exposure time-dependent	lack of tissue penetration

→ Combination of both techniques promises synergistic effects with high tissue penetration and spatial resolution from whole body to subcellular level

Goal of the Project

- Synthesis of radiolabeled Si-rhodamines for SPECT-, optical-imaging and fluorescenceguided biopsy for tumor resection
- Radiolabeling with technetium-99m: half-time of 6.01 hours (SPECT-emitter)
- Additional goal: sentinel lymph node detection

- \rightarrow Synthesis of the rhenium(I) analogues as cold surrogates for chemical characterization
- → Chemical characterization: NMR, mass analyses, UV/VIS/NIR-properties, stability tests, radiochemical experiments

sponsors.

6

pharmaceuticals

Results – Chemical Synthesis

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

pharmaceuticals

Results – ¹**H-NMR-Data**

protons	ligar	nd	Re-complex		
	δ (ppm)	<i>J</i> [Hz]	δ (ppm)	J[Hz]	
1	3.93	5.0	4.14		
2	3.41		3.46		
3	8.47		8.63		
NH	-		5.97	10.8, 5.5	
NH	-		5.27	11.3	

Chemical shifts in methanol-d₄ [400 MHz]

Results – Optical Properties

	Compound R ¹	Solvent	λ _{abs, max}	λ _{em}	٤max	Quantum Yield			
1a	-NH ₂	MeOH	653 nm	666 nm	91.900 M ⁻¹ cm ⁻¹	<0.010			
		PBS (pH = 7.4)	651 nm	654 nm	77.300 M ⁻¹ cm ⁻¹	<0.010			
1b	-NH ₂	MeOH	664 nm	679 nm	67.750 M ⁻¹ cm ⁻¹	0.074			
		H ₂ O/EtOH (5%)	665 nm	680 nm	51.600 M ⁻¹ cm ⁻¹	0.052			
		PBS (pH = 7.4)	663 nm	678 nm	61.900 M ⁻¹ cm ⁻¹	0.026			
		MeCN	665 nm	687 nm	120.000 M ⁻¹ cm ⁻¹	0.010			
1a -I	-N ₃	MeOH	651 nm	670 nm	156.500 M ⁻¹ cm ⁻¹	0.175			
		H ₂ O/EtOH (5%)	651 nm	668 nm	123.700 M ⁻¹ cm ⁻¹	0.103			
		PBS (pH = 7.4)	651 nm	668 nm	99.000 M ⁻¹ cm ⁻¹	0.116			
1b	-N ₃	MeOH	663 nm	680 nm	73.900 M ⁻¹ cm ⁻¹	0.076			
		H ₂ O/EtOH (5%)	663 nm	677 nm	77.200 M ⁻¹ cm ⁻¹	0.054			
		MeCN	664 nm	685 nm	98.000 M ⁻¹ cm ⁻¹	0.450			
1a	1,2,3-triazole	МеОН	655 nm	670 nm	79.900 M ⁻¹ cm ⁻¹	0.042			
		H ₂ O/EtOH (5%)	654 nm	675 nm	73.890 M ⁻¹ cm ⁻¹	0.098 ←			
		PBS (pH = 7.4)	655 nm	669 nm	79.900 M ⁻¹ cm ⁻¹	0.127 ←			
1b	1,2,3-triazole	H ₂ O/EtOH (5%)	671 nm	693 nm	59.970 M ⁻¹ cm ⁻¹	0.048			
1a	Re-complex	МеОН	654 nm	671 nm	63.900 M ⁻¹ cm ⁻¹	0.135			
		H ₂ O/EtOH (5%)	654 nm	674 nm	22.100 M ⁻¹ cm ⁻¹	0.104 ←			
		PBS (pH = 7.4)	651 nm	668 nm	39.100 M ⁻¹ cm ⁻¹	0.090 ←			
1b	Re-complex	PBS (pH = 7.4)	671 nm	693 nm	33.300 M ⁻¹ cm ⁻¹	0.052			
*	* FDA approved fluorescent dyes								
	5-aminolevulinic acid*	H ₂ O	405 nm	635 nm	5000 M ⁻¹ cm ⁻¹	0.080			
	Indocyanine green (ICG)*	blood	807 nm	822 nm	121.000 M ⁻¹ cm ⁻¹	0.001			
	Fluorescein*	H₂O	489 nm	515 nm	88.000 M ⁻¹ cm ⁻¹	0.85			

→ No significant impact on quantum yield after complexation with Re(I)-complex

S. Gioux, H. S. Choi, J. V. Frangioni, *Mol. Imaging* **2010**, *9*, 237–255.

Results – Optical Properties – UV/VIS/NIR-spectra

sponsors:

MDPI

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

pharmaceuticals

Results – Optical Properties – IVIS-imaging

 \rightarrow For *in vitro* and *in vivo* experiments in optical imaging experiments a maximum of 5 nmol of rhenium complex in an aqueous solution gives suitable and intensive emission signals

Results – Stability Tests in PBS, Histidine and Serum Plasma

1-30 November 2019

Results – First Radiolabeling Experiments with $[^{99m}Tc(CO)_3(H_2O)_3]^+$

- Synthesis of radioactive technetium-99m complex via IsoLink[™]
- Properties of technetium-99m:
 - half-time: 6.01 hours

1-30 November 2019

- energy: 143 keV
- Prominent isotope for SPECT-imaging (single photon emission computed tomography)

Radiolabeling of fluorescent Si-rhodamine with technetium-99m:

Siemens Healthineers[©]

13

sponsors.

Results – First Radiolabeling Experiments with [99mTc(CO)₃(H₂O)₃]+

Conclusion

- Synthesis of small-molecule based Re- and ^{99m}Tc-complexes and fluorescent dyes for bimodal imaging and sentinel lymph node detection
- Compounds were characterized with NMR, mass spectrometry and optical properties
- Fluorescent dyes show high purity, unique optical properties and high stability in PBS, histidine/PBS and human serum

 \rightarrow Compared with conventional FDA approved dyes very promising optical properties

- Upcoming research:
- o determination of *in vivo* stabilities
- o cellular and preclinical experiments in vitro and in vivo to determine intrinsic selectivity
- introducing biovectors into dye for selective enrichment in tumors

→ Synthesized radiotracer for potential PET- and optical imaging with PSMA-617 binding moiety as target vector with high affinity to prostate cancer tumor cells:

Acknowledgments

City of Heidelberg © Hotel.de/blog

Division of Radiopharmaceutical Chemistry, DKFZ, Heidelberg, Germany:

Prof. Dr. Klaus Kopka, Dr. Carsten S. Kramer, Martin Schäfer, Yvonne Remde

Stony Brook University, New York, USA: Assist. Prof. Dr. Eszter Boros, Brett Vaughn and the whole group

Institute of Inorganic Chemistry, Heidelberg University, Germany: Prof. Dr. Peter Comba

MPI for Biomedical Research, Heidelberg, Germany: Dr. Alexey Butkevich, Jessica Matthias (Prof. Dr. Dr. Stefan Hell)

