

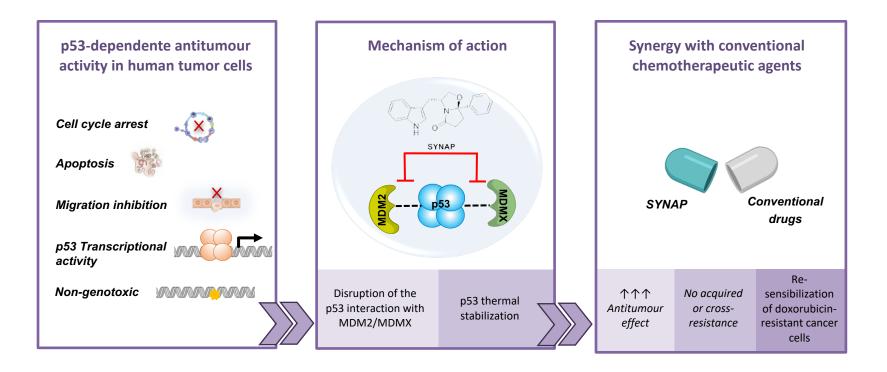
5th International Electronic Conference on Medicinal Chemistry

1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

Improving colon cancer therapy with a new promising smallmolecule activator of the p53-pathway through disruption of p53-MDM2/MDMX interactions

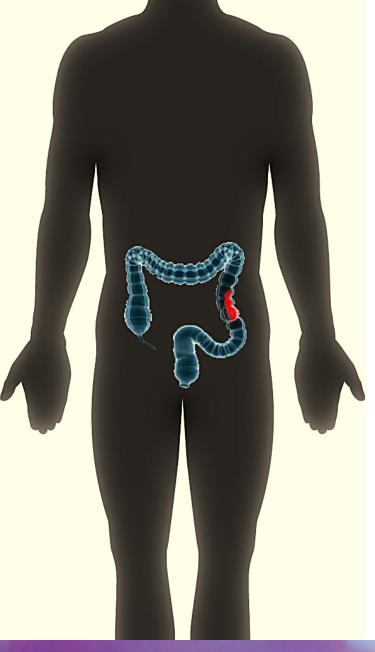
Liliana Raimundo¹, Margarida Espadinha², Joana Soares¹, Joana B Loureiro¹, Juliana Calheiros¹, Nair Nazareth¹, Joana Almeida¹, Marco G Alves³, Maria MM Santos² and Lucília Saraiva¹

¹LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal, ²Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal, and ³Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar & UMIB, Unity for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal


*<u>lucilia.saraiva@ff.up.pt</u> *liliana-raimundo@live.com

Improving colon cancer therapy with a new promising small-molecule activator of the p53-pathway through disruption of p53-MDM2/MDMX interactions

Abstract

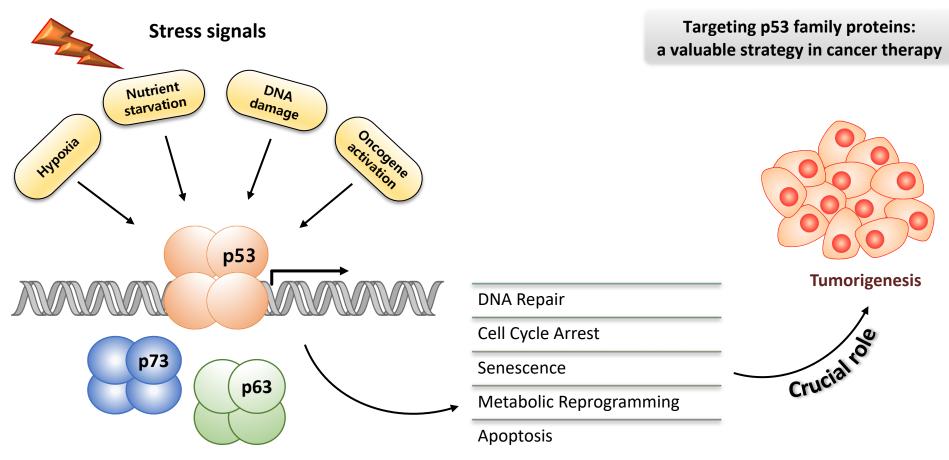

Impairment of the tumour suppressor p53 pathway is a major event in human cancers, making p53 activation one of the most attractive therapeutic strategies. This work describes the synthesis and biological evaluation of the (R)-tryptophanol-derived bicyclic lactam SYNAP as a selective p53 activator with potent anticancer activity against colon cancer. SYNAP anticancer activity and mechanism of action was studied in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116p53^{+/+}) and the corresponding p53-null isogenic derivative cells (HCT116p53^{-/-}), presenting a potent anti-proliferative effect dependent on p53 status. In HCT116p53^{+/+} cells, SYNAP p53-dependent growth inhibition was associated with cell cycle arrest, apoptosis, anti-migratory activity and upregulation of several p53 transcriptional targets. Data from a yeast-based assay and a co-immunoprecipitation assay in human cancer cells, indicated that SYNAP targeted p53 by inhibiting its interaction with murine double minute (MDM)2 and MDMX. Moreover, SYNAP sensitized colon cancer cells to the cytotoxic effect of known chemotherapeutic agents. In addition, SYNAP did not induce acquired or cross-resistance and re-sensitized doxorubicin-resistant colon cancer cells to the therapy. Importantly, SYNAP was non-genotoxic and presented low cytotoxic effects against normal cells.

Collectively, this work reports a new selective dual inhibitor of p53-MDM2/MDMX interactions with promising application in colon cancer therapy, both as monotherapy and in combination with known chemotherapeutic agents. Additionally, SYNAP represents a starting point for improved p53 activators, particularly inhibitors of p53-MDM2/MDMX interactions.

Keywords: p53 activation; inhibition of p53-MDM2/MDMX interactions; cancer treatment

Improving colon cancer therapy with a new promising small-molecule activator of the p53pathway through disruption of p53-MDM2/MDMX interactions

- Colorectal cancer is a leading cause of cancer incidence/death worldwide
- 56% of colorectal cancer patients die from the disease
- Lack of effective treatments


5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

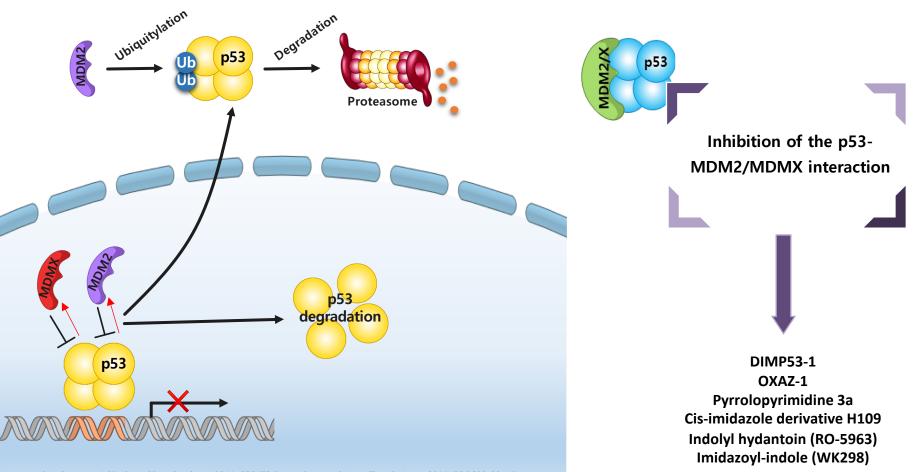
sponsors:

harmaceuticals

The p53 family of tumor suppressor proteins

p53 family proteins, p53, p63 and p73 are sequence specific **transcription factors**

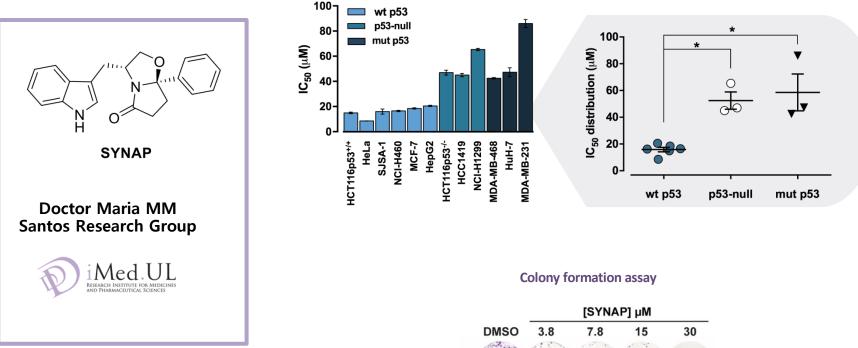
Wei and Zaika (2012). J Nucl Acids 2012, 687359.; Kruiswijk F et al., Nat Rev Mol Cell Biol, 2015, 16:393-405.


5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

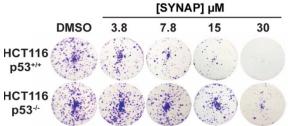
Targeting p53 in cancer

Impairment of p53 function can be found in the majority of human cancers

Lenos and Jochemsen, J Biochem Biotechnology, 2011, 876173 Popowicz, *et al.*, Ang Chemie Inter, 2011, 50:2680-88.; Li, *et al.*, Cell cycle, 2010, 9:1411-20.; Li and Lozano, Clin Cancer Res, 2013, 19:34-41.; Hoe, *et al.*, Nat Rev, 2014, 13: 217-236


5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

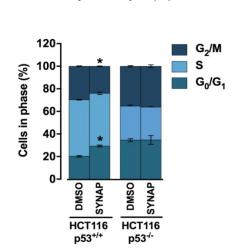
sponsors:



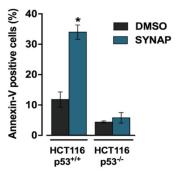
pharmaceuticals

SYNAP has p53-dependent growth inhibitory effect in human cancer cells

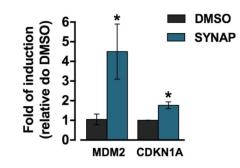
Sulforhodamine B assay



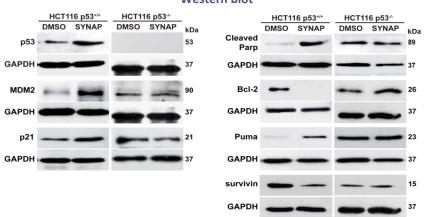
sponsors:



SYNAP has p53-dependent growth inhibitory effect in human colon cancer cells through induction of apoptosis and cell cycle arrest



Cell cycle analysis (PI)

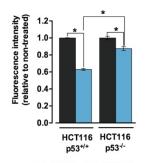


RT-qPCR analysis

SYNAP was tested at 15 μM on HCT116 cells for 48h; Data are mean±SEM (n=5); *p<0.05

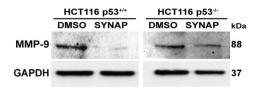
Western blot

SYNAP was tested at 15 μ M on HCT116 cells for 48h or 24h


SYNAP was tested at 15 μ M on HCT116 cells for 48h; Data are mean±SEM (n=5); *p<0.05

SYNAP has p53-dependent anti-migratory activity in human colon cancer cells

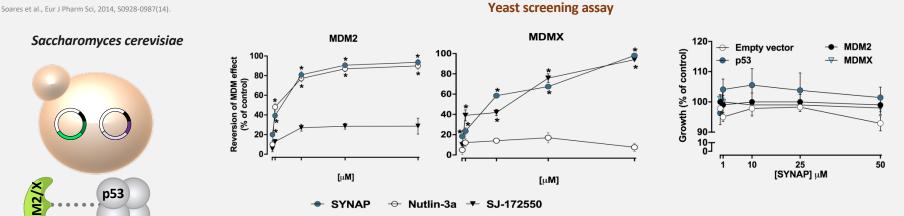
Wound healing assay


SYNAP was tested at 7 μM on HCT116 cells for 32h; Data are mean±SEM (n=5); *p<0.05

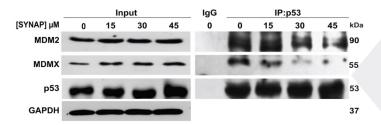
Chemotaxis cell migration assay

SYNAP was tested at 7 μM on HCT116 cells for 24h; Data are mean±SEM (n=5); *p<0.05

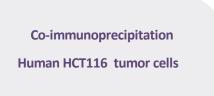
Western blot



SYNAP was tested at 7 μM on HCT116 cells for 24h; Data are mean±SEM (n=3); *p<0.05



SYNAP activates p53 by inhibiting its interaction with MDM2 and MDMX

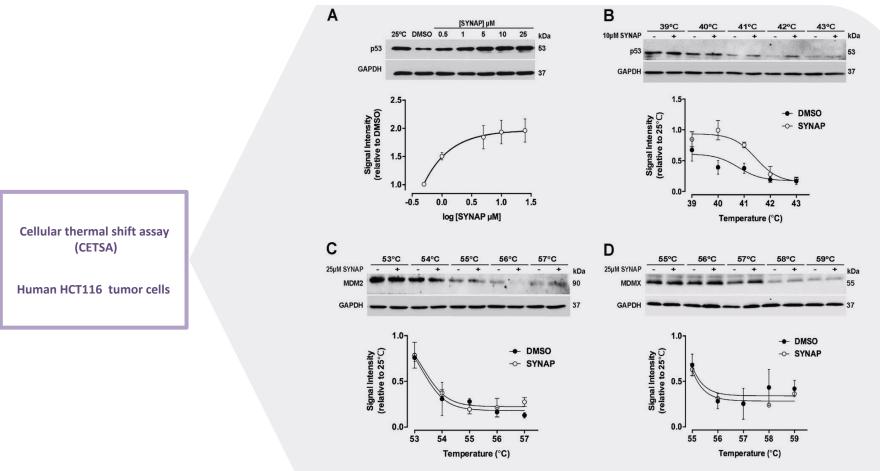


Effect of 0.1-50 μ M SYNAP, nutlin-3a and SJ-172550 on the reversion of MDM2/MDMX effect, by reestablishment of p53-induced growth inhibition, in yeast cells co-expressing human p53 and MDM2 or MDMX, after 42 h treatment; data are mean \pm SEM (n=6); *P<0.05

Effect of 0.1–50 μ M SYNAP on the growth of yeast cells expressing p53, MDM2 or MDMX alone, and yeast transformed with empty vectors, after 42 h treatment; data are mean \pm SEM (n=6);*P<0.05.

SYNAP was tested at 15, 30 and 45μ M on HCT116 p53^{+/+} cells for 16h.

MDM2/X

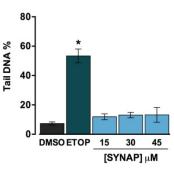

p53

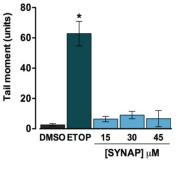
5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors. MDF

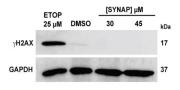
SYNAP induces p53 thermal stabilization in human colon cancer cells

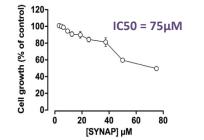
(A) Lysate samples treated with increasing concentrations of SYNAP were heated at 41°C; plot represents the increase of non-denatured p53 in SYNAP-treated samples relative to DMSO. (B–D) Lysate samples, obtained after treatment with SYNAP, were heated at different temperatures; plots represent the signal intensity of p53 (B), MDM2 (C) and MDMX (D) normalized to the signal intensity at 25°C.




SYNAP is non-genotoxic in human colon cancer cells and has low growth inhibitory effect against normal cells

Measurement of DNA damage in HCT116 p53*/* cells with SYNAP, after 48 h treatment; data are mean \pm SEM (n=5).


Comet assay


Quantification of tail DNA percentage; data are mean ± SEM, (n=5). Quantification of tail moment; data are mean ± SEM, (n=5).

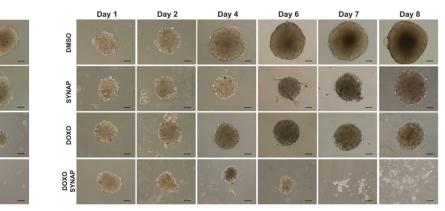
Histone phosphorylation

Analysis of YH2AX expression levels after 48h treatment with SYNAP.

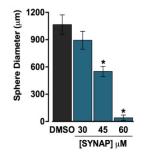
Sulforhodamine B assay in HFF-1 cells

Concentration-response curves of SYNAP in HFF-1 normal human cells, after 48 h treatment; data are mean ± SEM, n=5.

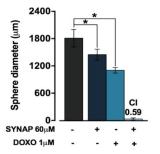
5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019



SYNAP sensitizes human colon cancer cells to the effect of conventional chemotherapeutic agents


Drug combination using SRB assay

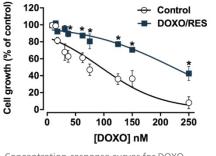
	Mutually nonexclusive CI		Dose reduction index (DRI)	
Drug combination with SYNAP	СІ	Profile	SYNAP	Conventional Drug
DOXO (nM)				Ŭ
18.7	0.676	Sinergy	2.113	4.926
37.5	0.762	Sinergy	2.432	2.847
75	0.701	Sinergy	3.762	2.247
150	0.616	Sinergy	6.902	2.121
Cisplatin (µM)				
0.5	0.801	Sinergy	1.623	5.397
1	0.832	Sinergy	1.836	3.467
2	0.987	Additive	1.997	2.056
4	1.08	Additive	2.408	1.053
5-FU (μM)				
0.65	0.889	Sinergy	1.812	2.957
1.25	0.839	Sinergy	2.194	2.606
2.5	0.833	Sinergy	2.649	2.192
5	0.762	Sinergy	3.378	2.142
ETOP (μM)				
0.38	1.099	Additive	1.287	2.577
0.75	0.867	Sinergy	1.834	3.110
1.5	0.803	Sinergy	2.300	2.711
3	1.099	Additive	2.298	1.351

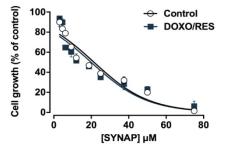

Effect of 7 μ M SYNAP in combination with chemotherapeutic drugs, in HCT116 p53^{+/+} cells, was evaluated using CompuSyn software to calculate combination index (Cl) and dose reduction index (DRI) values for each combined treatment. Cl<1, synergy; 1<Cl<1.1, additive effect; Cl>1.1, and the effect (n=6)

3D colon cancer spheroids

Spheroids formation in HCT116 p53^{+/+} after 96 h treatment with SYNAP; Treatment performed at the seeding time. Determination of spheroids diameter at the end of treatment. Data are mean±SEM (n=5); *p<0.05

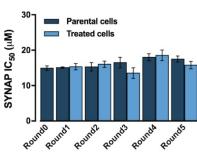
3-day-old HCT116 p53+++spheroids, treated with SYNAP for up to 8 days. Determination of spheroids diameter at the end of treatment; Data are mean±SEM (n=5); *P<0.05. Cl determined considering spheroid diameter.


5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019



Colon cancer cells develop resistance to DOXO but not to SYNAP: DOXO-resistant cancer cells show no cross-resistance to SYNAP and are re-sensitized to DOXO effect by SYNAP

Sulforhodamine B assay



Concentration-response curves for DOXO in control and DOXO-resistant (DOXO/RES) HCT116 cells, after 48 h treatment. Data are mean±SEM (n=5); *p<0.05

Concentration-response curves for SYNAP in control and DOXO-resistant (DOXO/RES) HCT116 cells, after 48 h treatment, Data are mean±SEM (n=5); *p<0.05

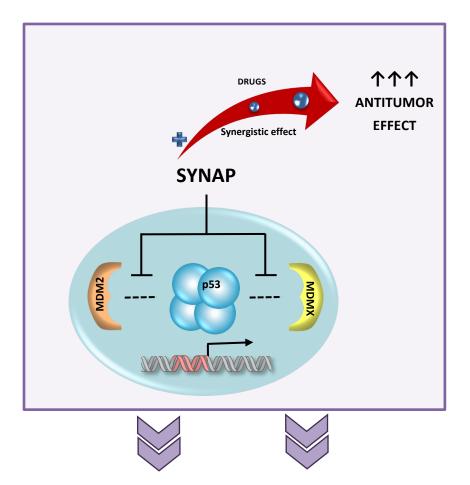
Drug combination using SRB assay

IC50 values for SYNAP in 6 generations of cells (5 rounds of cells treated with 15, 30, 45, 60 and 75 μ M SYNAP), after 48 h treatment. Data are mean4SEM (n=5).

	Mutually nonexclusive CI		Dose reduction index (DRI)	
Drug combination with SYNAP	CI	Profile	SYNAP	Conventional
DOXO (nM)				Drug
25	0.360	Sinergy	5.182	5.975
62.5	0.585	Sinergy	5.282	2.522
125	0.411	Sinergy	7.649	3.564
250	0.453	Sinergy	9.112	2.912

Effect of 7 µM SYNAP in combination with DOXO in DOXO/RES HCT116 cells, was evaluated using CompuSyn software to calculate combination index (CI) and dose reduction index (DRI) values for each combined treatment. CI<1, synergy; 1<CI<1.1, additive effect; CI>1.1, antagonism. Data were calculated using a mean value effect (n=6).

Conclusions


→ SYNAP is a new p53-activating agent

→ SYNAP activates p53 through disruption of the p53-MDM2/MDMX interactions and potential interaction with p53

→ SYNAP sensitized colon cancer cells to the cytotoxic effect of known chemotherapeutic agents

 \rightarrow SYNAP did not present acquired or crossresistance

 \rightarrow SYNAP may represent the starting point for improved p53 activators

New encouraging anticancer drug candidate, alone or combined with conventional chemotherapeutics in precision therapy of colon cancer

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

Acknowledgments

This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through grant UID/QUI/50006/2019. This work received financial support from the European Union (FEDER funds through the Operational Competitiveness Program (COMPETE) POCI-01-0145-FEDER-006684/POCI-01-0145-FEDER-007440 and (3599-PPCDT) PTDC/DTP-FTO/1981/2014 – POCI-01-0145-FEDER-016581) and the FCT grants PTDC/QUIQOR/29664/2017, UID/DTP/04138/2013 (iMed.ULisboa), IF/00732/2013 (M.M.M. Santos). We thank FCT and ESF (European Social Fund) through POCH (Programa Operacional Capital Humano) for: L. Raimundo PhD grant ref. SFRH/BD/117949/2016; J. Loureiro PhD grant ref SFRH/BD/128673/2017; M. Espadinha PhD grant ref SFRH/BD/117931/2016. J. Calheiros thanks ICETA for her grant ref. ICETA2019-71. We thank (POCH), specifically the BiotechHealth Programme (Doctoral Programme on Cellular and Molecular Biotechnology Applied to Health Sciences; PD/00016/2012).

