

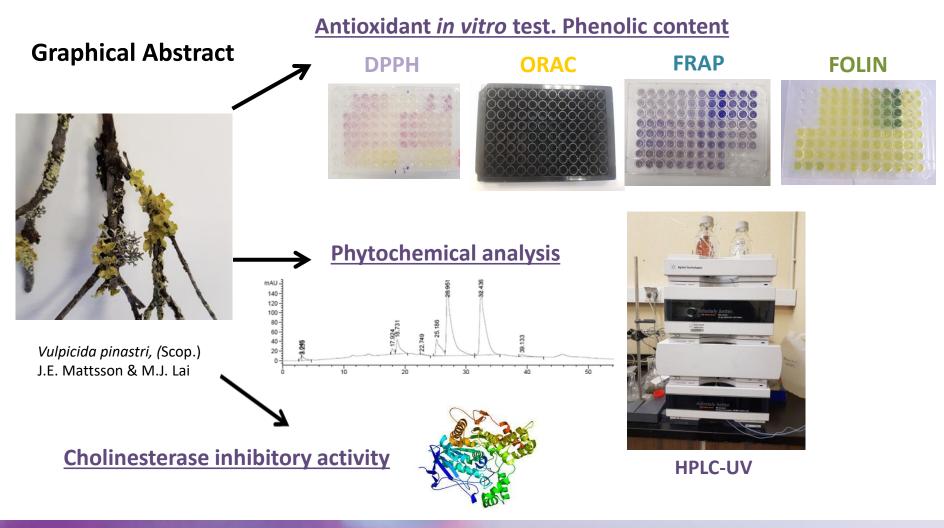
5th International Electronic Conference on Medicinal Chemistry

1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

sponsored by
pharmaceuticals

1

Antioxidant capacity and cholinesterase inhibitory activity of Vulpicida pinastri lichen and its chemical composition


I.M. Ureña-Vacas*, E. González-Burgos, M.P. Gómez-Serranillos

Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid (Madrid, Spain).

* Corresponding author: isabelur@ucm.es

Antioxidant capacity and cholinesterase inhibitory activity of *Vulpicida pinastri* lichen and its chemical composition.

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

Abstract

This study reports for first time the antioxidant capacity and cholinesterase inhibitory activity of the methanol extract of the lichen *Vulpicida pinastri* (Scop.) J.E. Mattsson & M.J. Lai and its chemical composition. This lichen specie with a greenish yellow foliose thallus was collected in Puerto Alto del Peñon, Zamora (Spain). Antioxidant capacity was assessed by in vitro tests (DPPH, ORAC and FRAP), total phenolic content by Folin-Ciocalteu method, cholinesterase inhibitory activity by Ellman's colorimetric method and chemical composition by **HPLC-UV method**. The results showed that the values for antioxidant capacity were IC50 283.7 \pm 31.7 μ g/ml for DPPH, 1.5 \pm 0.1 μ mol TE/mg dry extract for ORAC and 25.4 \pm 2.3 μ mol of Fe2+ eq/g sample for FRAP. Moreover, total phenolic content had a value of 48, 9 ±4.8 μ g GA/mg. Furthermore, IC50 values were 0.19 ± 0.003 mg/mL for acetylcholinesterase inhibitory activity and 0.89 ± 0.018 mg/mL for butyrylcholinesterase inhibitory activity. Finally, the analysis of chemical composition revealed that the major secondary metabolites were vulpinic acid (9.3 ± 0.8), pinastric acid (41.9 ± 1.07) and usnic acid (36.5 ± 3.62). In conclusion, Vulpicida pinastri is a promising agent to further study for the prevention and treatment of Alzheimer's disease based on its antioxidant and cholinesterase inhibitory activities.

Keywords: lichen; antioxidant; cholinesterease inhibition activity; secondary metabolites

Introduction

Lichens are symbiotic organisms composed by a mycobiont (fungus) and a photobiont (unicellular algae or cyanobacteria). The mycobiont provides algae with water and simulates a humid environment. The algae produces necessary nutrients for the fungus through photosynthesis.

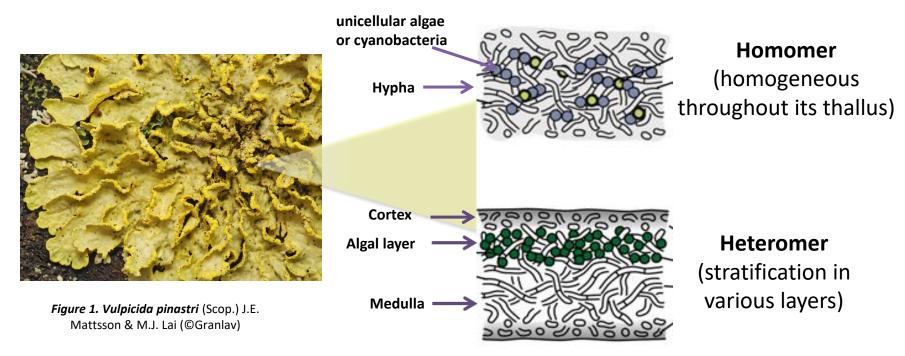


Figure 2. ©M.Piepenbring, CC BY-SA

Morphology-types:



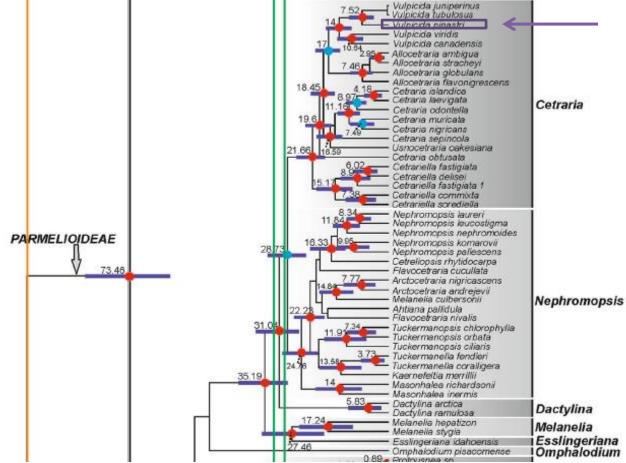
Figure 3. Crustose lichen morphology

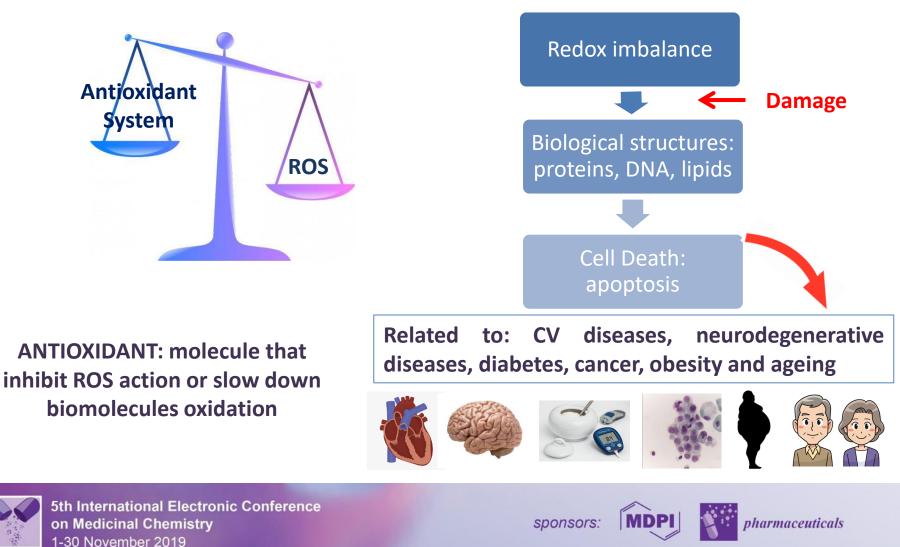
Figure 4. Foliose lichen morphology

Figure 5. Fruticulose lichen morphology

Introduction: Phylogeny

Parmeliaceae is the largest family of lichenized fungi (80 genera; 2,800 species), and within this, **cetrarioid clade** stands out phylogenetically by number




Figure 6. Phylogenetic tree fragment (Divakar et al., 2017)

Introduction: Oxidative stress

Imbalance between reactive oxygen species production $(H_2O_2, O_2, O_2, O_2, O_2)$ and body's antioxidant system (enzymatic and non-enzymatic)

Introduction: Description

Vulpicida pinastri (Scop.) J.E. Mattsson & M.J. Lai > Greenish yellow foliose thallus

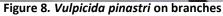
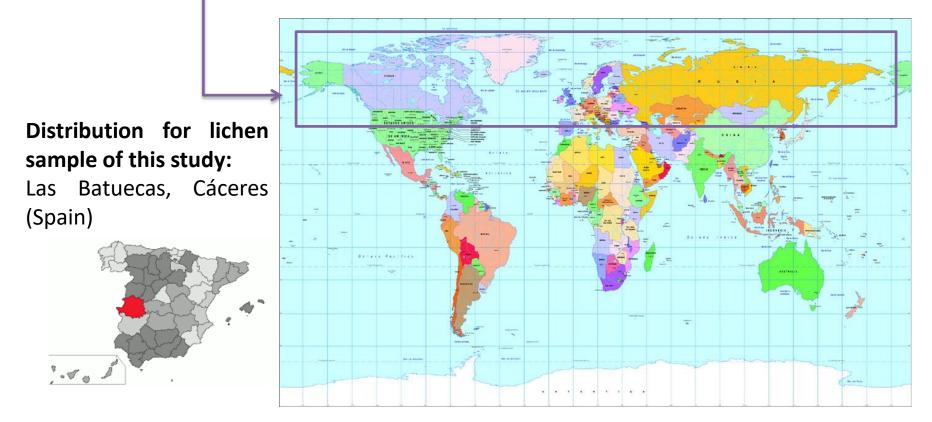

On rocks: rosettes with short lobes ٠

Figure 7. Vulpicida pinastri c

On branches: elor •



Introduction: Distribution

World distribution: circumboreal, low arctic and lower alpine regions: North America, Europe and Asia

Introduction: Methods

- 1. ANTIOXIDANT IN-VITRO TEST
 - DPPH
 - FRAP
 - ORAC

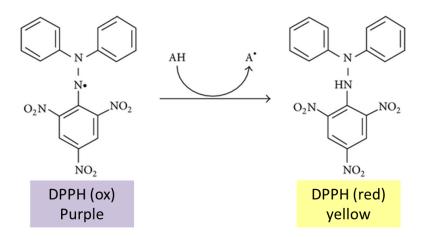
2. TOTAL PHENOLIC CONTENT

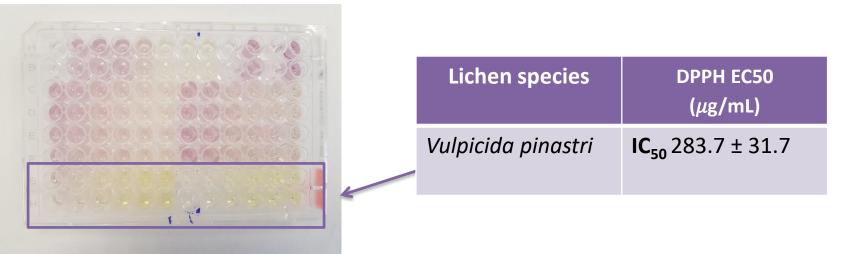
• FOLIN- CIOCALTEAU

3. ANTICHOLINESTEREASE-BUTYRYLCHOLINESTEREASE

ELLMAN'S METHOD

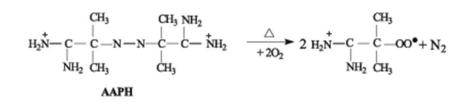
4. PHYTOCHEMICAL ANALYSIS


• HPLC-UV



Results and discussion: Antioxidant In vitro test -> DPPH

Based on the ability of antioxidants to reduce DPPH (2,2-Diphenyl-1picrylhydrazyl) in radical form to the DPPH compound.



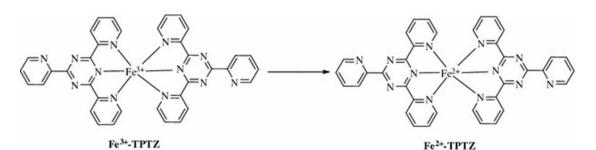
5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

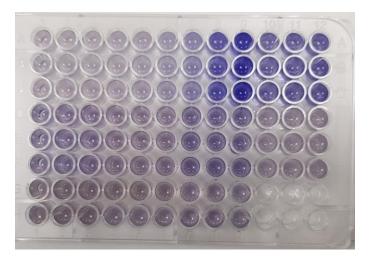
Results and discussion: Antioxidant In vitro test -> ORAC

It is based on fluorescence's loss of fluorescein which decreases in presence of peroxyl radicals.

Peroxyl radicals were generated by thermal decomposition of AAPH.

Lichen species	ORAC (μ mol TE/mg dry extract)
Vulpicida pinastri	1.5 ± 0.1

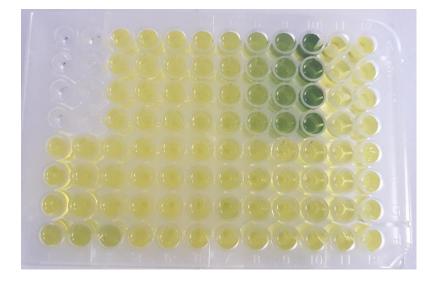

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019



Results and discussion: Antioxidant In vitro test -> FRAP

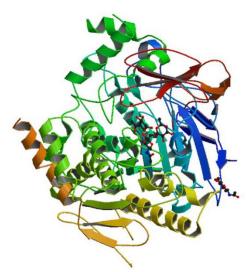
- Redox-linked colorimetric reaction
- Reduction of Fe³⁺ to Fe²⁺ ion is due to antioxidants

Lichen species	FRAP (µmol of Fe ²⁺ eq/g sample)
Vulpicida pinastri	25.4 ± 2.3


5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

Results and discussion: Total phenolic content -> Folin Ciocalteu

- Determination of polyphenols
- Polyphenols react with Folin-Ciocalteu reagent
- This reaction forms a blue chromophore complex that can be quantified by visible-light spectrophotometry


Lichen species	FOLIN (µg GA/mg)
Vulpicida pinastri	48.9 ±4.8

Results and discussion: Cholinesterase Inhibition Activity

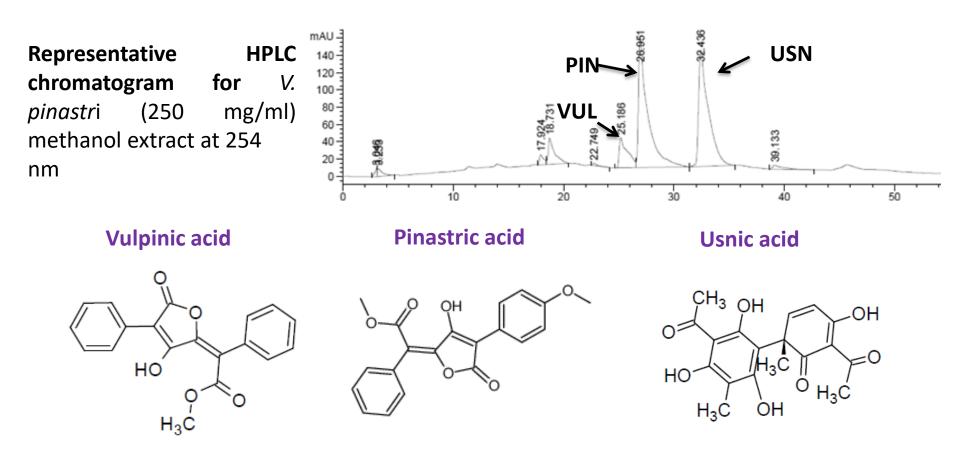
- The enzyme inhibitory activities AChE and BChE were determined using Ellman method.
- Cholinesterase activity is measured indirectly by quantifying the concentration of 5-thio-2-nitrobenzoic acid (TNB) ion formed in the reaction between the thiol reagent 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and thiocholine, a product of substrate (i.e. acetylthiocholine [ATCh]) hydrolysis by the cholinesterase.

Lichen species	AchEi IC ₅₀ (mg/mL ± SD)	BchEi IC ₅₀ (mg/mL ± SD)
Vulpicida pinastri	0.19 ± 0.003	0.89 ± 0.018

Figure 9. Acetylcholinesterase

Results and discussion: Phytochemical analysis-> HPLC-UV

- **Sample**: 250 μg/ml *V. pinastri* methanol extract
- **HPLC**: Agilent 1260 instrument (Agilent Technologies, CA, USA)
- Software: Agilent Chemstation
- Column: reversed-phase Mediterranea
 Sea18 column (150 mm × 4.6 mm, 3 μm particle size; Teknokroma, Barcelona, Spain)
- Phases:
 - ✓ (A)->1% orthophosphoric acid in milli-Q water
 - ✓ (B)->HPLC-methanol
- Volume: 20µL
- Flow rate: 0.6 ml/min
- Column temperature: 40 °C
- UV spectrum :190 and 400 nm
- Reference chromatograms: 254 nm



Results and discussion- Phytochemical analysis

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

Conclusions

- Among all antioxidant *in vitro* assays, DPPH method shows a moderate antioxidant capacity (IC_{50} 283.7 ± 31.7 μ g/mL)
- Vulpicida pinastri shows that its anti-acetylcholinesterease inhibitory activity (0.19 ± 0.003 mg/mL) was better than its anti-butyrilcholinesterease inhibitory activity (0.89 ± 0.018 mg/mL)
- The major compounds identified by HPLC were vulpinic acid, pinastric acid and usnic acid
- Vulpicida pinastri is a promising agent to further study for the prevention and treatment of Alzheimer's disease based on its antioxidant and cholinesterase inhibitory activities

Acknowledgments

- This work was supported by a Doctoral Grant from the University Complutense of Madrid awarded to Isabel M^a Ureña Vacas
- We acknowledge to the experts Dr. P.K. Divakar and Dr. A. Crespo for providing biological material

