Use of Aptamers to deliver therapeutic genetic sequences in muscle

LEONIDAS A. PHYLACTOU

Muscular Dystrophy

Group of muscle diseases

Inherited

Muscle weakness and wasting

 Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, Myotonic Dystrophy

MYOTONIC Dystrophy

- Autosomal dominant
- Most common neuromuscular disease in adults
- Muscle weakness and wasting
- Other symptoms may include cataracts, intellectual disability, and heart conduction problems
- Type 1 (DM1) and type 2 (DM2)
- Anticipation

Thornton, C. A. (2014). "Myotonic dystrophy." Neurologic clinics 32(3): 705-719, viii.

Thornton, C. A. (2014). "Myotonic dystrophy." Neurologic clinics 32(3): 705-719, viii.

ANTISENSE OLIGONUCLEOTIDES AGAINST MYOTONIC DYSTROPHY

Duchenne muscular Dystrophy

- X-linked
- Most common form of muscular dystrophy
- 1 in 3,500 newborn boys
- Progressive muscle weakness and cardiomyopathy
- Ultimately die from cardiac or respiratory complications before their third decade of life

Chamberlain, J. R. and J. S. Chamberlain (2017). Molecular Therapy 25(5): 1125-1131

DMD gene

- Dystrophin DMD gene is the largest known human gene (2.4 Mb), containing 79 exons
- Nonsense or frame-shift mutations
- Hotspots: deletions between exons 45 55 and duplications between exons 2-10
- Thus these mutations lead to loss of dystrophin expression in the muscle fibres
- 1 in 3 cases is caused from a *de novo* mutation

Chamberlain, J. R. and J. S. Chamberlain (2017). Molecular Therapy 25(5): 1125-1131

DMD protein

The dystrophin associated glycoprotein complex (DGC)

DMD protein

The dystrophin associated glycoprotein complex (DGC)

Potential Therapeutic Treatment

Delivery of AON in muscle

Aptamers

- Synthetic nucleic acid molecules designed to bind with high specificity and affinity to a selected target.
- Fold into unique three-dimensional structures.
- <u>Systematic Evolution of Ligands by Exponential Enrichment (SELEX).</u>
 - ✓ "Survival of the fittest".
 - \checkmark Has been modified in different ways for a number of applications.
 - Selective targeting of cells for the delivery of therapeutic molecules: siRNAs, miRNAs, chemotherapeutics and toxins.

Romero-Lopez, C. and A. Berzal-Herranz (2017). "Aptamers: Biomedical Interest and Applications." Pharmaceuticals 10(1)

Aptamer Delivery of AON in muscle

Cell-Internalizing SELEX for skeletal muscle RNA aptamers

Philippou et. al. 2017 Molecular Therapy Nucleic Acids Fluorescein labelled RNA aptamers pool (round 15) + DAPI

Round 15 pool / Nucleus

Aptamer convergence and alignment

Internalization and cellular localization of A01B RNA aptamer *in vitro*

A01B RNA aptamer was found free from early endosomal compartments

A01B RNA aptamer internalizes efficiently into skeletal muscle

Developing heart aptamers for AON delivery in DMD

Conclusions & FUTURE DIRECTIONS

- Aptamers a novel approach to deliver specifically and efficiently to muscle
- First such aptamer discovered
- Incorporation of therapeutic oligonucleotides
- Specific targeting the heart muscle

Acknowledgements

THE CYPRUS INSTITUTE OF NEUROLOGY & GENETICS

Department of Molecular Genetics, Function & Therapy

- Melina Christou
- Constantina Costi
- Pavlos Fanis
- Kristia Georgiou
- Demetris Koutalianos
- Andrie Koutsoulidou
- Nikolas Mastroyiannopoulos
- Stalo Mytidou
- Vassos Neocleous
- Styliana Philippou
- Leonidas Phylactou

FUNDING BODIES

