

MOL2NET, International Conference Series on Multidisciplinary Sciences I International Biotechnology Congress, UDLA, Quito, Ecuador, 2019

Molecular characterization of *Moniliophthora roreri*, causative agent of moniliasis in cocoa in three provinces of Ecuador: Los Ríos, Manabí and Santo Domingo de los Tsáchilas

Mollocana, D.^a, Erazo, MP.^a, Aguirre,X.^a, Torres, ML.^a

^a Universidad San Francisco de Quito USFQ. Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales. EC170157, Quito, Ecuador.

GenBank.

Cocoa (<u>Theobroma cacao</u> L) is one of the main agricultural products of Ecuador. However, it is susceptible to diseases and pests being those of fungal origin, the most common [1]. Black sheath caused by <u>Phytophthora</u> sp., the witch's broom caused by <u>Moniliophthora perniciosa</u>, and moniliasis caused by <u>Moniliophthora roreri</u> are the most reported conditions. Moniliasis is considered the most destructive than all diseases that affect this crop [2].

<u>M.roreri</u> manifests itself on the cob of the plant and presents two phases of infection: the biotrophic where it can be seen malformations in the fruit, and the necrotic where rot and death of the fruit occur [3]. The spore masses break off the fungus pseudostroma and move by different mechanisms (wind, humans, animals, and water) [4]. The climatic conditions and the amount of free spores are determinants in the life cycle of this pathogen [5]. Nevertheless, the fungus is present during year-round as a component of the air layer in growing regions, making eradication difficult. A better knowledge of the genetic diversity of this microorganism could lead to a

greater understanding of its distribution and
adaptation mechanisms.
Since this disease causes great economic losses,
and there have been few studies of its molecular
level, the objective of this investigation was the
characterization of <u>M. roreri</u> isolates, to
determinate its genetic diversity. To do this, 75
samples of the <u>M. roreri</u> fungus from three
Ecuadorian provinces of high cocoa productivity
were taken. Nucleotide diversity was determined
through the amplification and sequencing of the
ITS1 and ITS2 ribosomal regions of each sample.
It was found a low level of genetic differentiation
between the samples analyzed. The results of the
molecular variance analysis (AMOVA) revealed
that most of the genetic variability is found within
individuals (71.29%). To study phylogenetic
relationships, an MCC algorithm tree was made
using the sequences of the ITS regions from the
samples in this study, together with other
continental sequences previously reported in
public databases (42 samples in total).
Interestingly, it was found after performing the
phylogenetic analyzes that Ecuador could be the
center of origin of <u>M. roreri</u> , with multiple
reintroductions of the pathogen occurring
throughout Latin America. Data should be
corroborated with future research.
Keywords: Moniliophthora roreri, nucleotide
diversity, phylogeny, ITS region

References

[1] End, M. J., Daymond, A. J., & Hadley, P. (Eds.). (2014). Technical guidelines for the safe movement of cacao germplasm. Revised from the FAO/IPGRI Technical Guidelines No. 20 (Second Update, August 2014). Global Cacao Genetic Resources Network (CacaoNet), Bioversity International, Montpellier.

[2] Phillips-Mora, W., Aime, M. C., & Wilkinson, M. J. (2007). Biodiversity and biogeography of the cacao (*Theobroma cacao*) pathogen *Moniliophthora roreri* in tropical America. Plant Pathology, 56, 911–922.

[3] Bailey, B. Evans, H. Phillips- Mora, W. Ali, Sh. Meinhardt, L. (2018). *Moniliophthora roreri*, causal agent of cacao Frost. Molecular Plant Pathology 19(7):1580-1594

[4] Philips Mora, W. 2003. Origin, biogeography, genetic diversity and taxonomic affinities of the cacao (*Theobroma cacao* L.) fungus *Moniliophthora roreri* (Cif.) Evans et al. as determined using

•

http://sciforum.net/conference/mol2net-05

molecular, phytopathological and morpho-physiological evidence. (Doctoral Thesis). University of Reading. UK.

[5] González, A. 2014. Aislamiento y caracterización del hongo *Moniliophthora roreri* (monilia) en frutos de *Theobroma cacao* L. (Cacao) del cultivar San José del Real de la Carrera, USULUTAN (Thesis). Universidad de El Salvador. El Salvador.