

5th International Electronic Conference on Medicinal Chemistry

1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

sponsored by
pharmaceuticals

RNA aptamers: antiviral drugs of the future

Alfredo Berzal-Herranz ^{1,*}, Cristina Romero-López

¹ Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC PTS Granada. Av del Conocimiento 17, 18016 Granada, Spain

* Corresponding author: aberzalh@ipb.csic.es

Aptamers : RNA or DNA oligonucleotides able to bind specifically and with high affinity to a target molecule

Aptamer

The term Aptamer comes from the Greek voice haptein - to bind to

Jack W Szostak

Nature 346, 818-822 (30 August 1990) | doi:10.1038/346818a0; Accepted

In vitro selection of RNA molecules that bind specific ligands

Andrew D. Ellington & Jack W. Szostak^{*}

 Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA

To whom correspondence should be addressed. 818

Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population

of random sequence RNA molecules. Roughly one in 10¹⁰ random sequence RNA molecules folds in such a way as to create a specific binding site for small ligands.

Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase

Craig Tuerk; Larry Gold

Science, New Series, Vol. 249, No. 4968 (Aug. 3, 1990), 505-510.

Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819900803%293%3A249%3A4968%3C505%3ASEOLBE%3E2.0.CO%3B2-

Science is currently published by American Association for the Advancement of Science.

The authors are in the Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO 80309.

SELEX

Systematic Evolution of Ligands by EXponential enrichment.

Larry Gold

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

Aptamer's targets

Ions Nucleotides Aminoacids Organic compounds Peptides Proteins Nucleic Acids Virus Cell organelles Eukaryotic cells...

Aptamers selection scheme SELEX

(Systematic Evolution of Ligands by EXponential enrichment)

Aptamer's targets

Ions Nucleotides Aminoacids Organic compounds Peptides Proteins Nucleic Acids Virus Cell organelles Eukaryotic cells...

Sistematic Evolution of Ligands by Exponential enrichment (SELEX)

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

5' UTR HIV

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

on Medicinal Chemistry 1-30 November 2019

sponsors:

Progression of the selection process

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

11

					-
x 23	XIV22	GGGAAUUCAA CACCACUAUUGUU<u>EICMAAGGA</u>AGCA AUGGAGUGAUCUGAUACUACGAGCUCGAC	XII	x 17	
x 6	XIV26	GGGAAUUCAA GUAC<u>ECOAAC</u>GAGUACAUCGUAGCA AUGGA <u>GUGA</u> UCUGAUACUACGAGCUCGAC	XI21	x 7	-
		GGGAAUUCAA GUAC<u>ECOAAC</u>GAGUACAUCGUAGUA AUGGA <u>GUGA</u> UCUGAUACUACGAGCUCGAC	XI23	x 3	
x 2	XIV1	GGGAAUUCAA CACAACCUGGGU<mark>EECAAEGA</mark>ACCCA AUGGA <mark>GUGA</mark> UCUGAUACUACGAGCUCGAC	XI141	x 2	
	XIV12	GGGAAUUCAA CACCGCUAUUGUU<mark>EEOAAGGA</mark>AGCA AUGGAGUGAUCUGAUACUACGAGCUCGAC			
		GGGAAUUCAA GAAUAGCACAUUGU<u>CEOAAG</u>AACA AUGGAGUGAUCUGAUACUACGAGCUCGAC	XI13		
		gggaauucaa caccacuauuguu<u>eecaae</u>gaaaca auggague <u>aucuga</u> uacuacgagcucgac	XI149		
		GGGAAUUCAA GACACAACAUGGU<mark>GGOAAC</mark>GAACA- AUGGAGUGAUCUGAUACUACGAGCUCGAC	XI108		
		GGGAAUUCAA GUAC<mark>EECHAEGA</mark>GUACAUCGUAACA AUGGA <u>GUGA</u> UCUGAUACUACGAGCUCGAC	XI107		
		gggaauucaa caccacuauuguu<u>eemaega</u>agua auggagugaucugauacuacgagcucgac	XI129		
	XIV32	gggaauucaa caccacuauuguu<u>eeenteega</u>agca auggague <u>aucuga</u> uacuacgagcucgac			
	XIV5	gggaauucaa guac<mark>eggaacga</mark>guacaucgcagca augga <u>guga</u> ucugauacuacgagcucgac			
		gggaauucaa cacuaccugggu<mark>eeenngga</mark>accca auggagugaucugauacuacgagcucgac	XI101		
r		3' GUU <mark>CCGUUCGAAAU</mark> AAC5' Poly-A Apical loop			
		GGGAAUUCAA CAACUACCAAUAGG<mark>ACCCAG</mark>CCUA- AUGGAGUGAUCUGAUACUACGAGCUCGAC	XI30		TAR
		gggaauucaa ccaccuccuagug<mark>acceacu</mark>gcacu auggagugaucugauacuacgagcucgac	XI70		TAR PBS
		gggaauucaa uuaccuccgggacgcucacca<mark>ccea</mark>A uggagug <mark>aucuga</mark> uacuacgagcucgac	XI63		TAR SD
		gggaauucaa caacacuuaucgac<mark>uaccu</mark>guccce auggagugaucugauacuacgagcucgac	XI15-	<u> </u>	_
	XIV25	gggaauucaa cacuacucuacggcucgaag<mark>cccca</mark>A ugga <mark>guga</mark> ucu <mark>gaua</mark> cuacgagcucgac			
		gggaauucaa caacacuacugacacugua-<mark>cccca</mark>A uggagugaucugauacuacgagcucgac	XI105		
		gggaauucaa aacaccuccuccagc<mark>cucccag</mark>ca- auggagugaucugauacuacgagcucgac	XI142		TAR SD
	XIV48	3' UCG <u>AGGGUC</u> CGA5' TAR Apical loop GGGAAUUCAA AACCACAACGGC<u>UAACGAGU</u>ECCCA AUGGAGUG <u>AUCUGA</u> UACUACGAGCUCGAC			
		GGGAAUUCAA GGAGCACCACUUGGU<mark>CEACUE</mark>CCA- AUGGAGUG <u>AUCUGA</u> UACUACGAGCUCGAC	XI134		_
		GGGAAUUCAA UCUGCUCCGCCGGU<mark>GCACCAG</mark>ACCA AUGGAGUGAUCUGAUACUACGAGCUCGAC	XI20	-++	-
		gggaauucaa ca<u>ccacuau</u>uguugg<u>caagga</u>aguaaugga<u>guga</u>jicugauacuacgagcucga	XI129		
	G	GGAAUUCAA UCUACUAGCCACGCCGACACCAACAA UGGAGUG <u>AUCUGA</u> UACUACGAGCUCGAC	XI103		
		GGGAAUUCAA CAACACUUAUCGACUACOUGUCCCG AUGGAGUGAUCUGAUACUACGAGCUCGAC	XI15 -		
		GGGAAUUCAA CAACGACAUGGQ<u>UUGAGUG</u>ACGCCA AUGGAGUGAUCUGAUACUACGAGCUCGAC	XI3		LR2
		3' UGA <mark>GUGG</mark> UCA5' SD Apical loop			
	XIV37	gggaauucaa cacuaccgaccguccacaccagcca Auggagugaucugauacuacgagcucgac			
		gggaauucaa cacgauaggaacaacaca<mark>agaaaca</mark>A uggagugaucugauacuacgagcucgac	XI73	ж 3	
		gggaauucaa cacgauaggaacaacaca<mark>agaagca</mark>A uggagugaucugauacuacgagcucgac	XI65		
		gggaauudaa acacuacuacggaacugccugagca auggagug <mark>aucuga</mark> uacuacgagcucgac	XI117		
		gggaauud <mark>aacugacgcccuccugcugcaagccc-augga<mark>guga</mark>ucugauacuacgagcucgac</mark>	XI110		12
					エム

RNA aptamers targeting the HIV-1 5' UTR

Structural analysis of isolated aptamers revealed a highly conserved 16 nt long consensus structural RNA domain.

RNA16(+) is an *in silico* designed minimal RNA aptamer consists in a 4 bp helical region closed by an 8 nt-long closing loop. Nucleotide sequence of the loop is complementary to the HIV-1 PolyA domain.

Anti HIV-1 5'UTR Aptamers

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

Aptamers targeting the HCV CRE

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

MDPI

ŝ

4,4,

άť

pharmaceutic

'n ÷

Conclusions

- Aptamers offer a potential means for the development of efficient therapeutic drugs.
- Viral RNA genomes have been postulated as excellent candidates to be targeted by RNA aptamers.
- Viral RNA genomes contains highly conserved structural domains that are essential for the completion of the viral cycle. Interfering with the activity of these essential domains, by competing the interactions they are involved in or by modifying their structure, offers an excellent scenario for fighting infections caused by RNA viruses.
- RNA Aptamers targeting specific functional RNA domains are efficient antiviral agents.

Cristina Romero-López Alba Fdez.-Sanlés Soledad Marton Beatriz Berzal-Herranz F. J. Sánchez-Luque

Carlos Briones, CAB (CSIC/INTA)

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

