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Abstract: The success of the analysis and design of a Water Network (WN) is strongly dependent on1

the veracity of the data and a priori knowledge used in the model calibration of the network. This fact2

motivates this paper in which an off-line approach to verify data-sets acquired from WN is proposed.3

This approach allows the data separation of abnormal and normal events without requiring high4

expertise for a large raw database. The core of the approach is an unsupervised classification tool5

that does not requires the features of the different events to be identified. The proposal is applied to6

data-sets acquired from a Mexican water management utility located in the center part of Mexico. The7

data-sets were pre-processed to be synchronized since they were recorded and sent with different and8

irregular sampling times to a web platform. The pressures and flow-rate conforming the data-sets9

correspond to dates between 25/06/2019 @ 00:00 and 25/09/2019 @ 00:00. The district metered area10

(DMA) is formed by 90 nodes and 78 pipes and it provides service to approximately 2000 consumers.11

The raw data identified as generated by abnormal events were validated with the reports of the12

DMA managers. The abnormal events identified were communication problems, sensor failures, and13

draining of the network reservoir.14

Keywords: off-line data validation; water networks; abnormal data classification.15

1. Introduction16

Data acquisition systems in WNs collect measurements from the in-situ sensors and transform17

them into mathematical values that represent a physical quantity. This value set RD -known as raw18

data- must be validated before being used for network operation purposes or statistics studies to assure19

the reliability of the captured information. Some common problems caused by sensors malfunctions20

are offset, drift, and freezing of the measured variable [1]. Moreover, data from abnormal events that21

occur in the network must be identified to avoid incorrect studies and the construction of false models.22

In general, WN operating data are required to build mathematical and data- driven models which23

are significantly affected by the uncertain demand patterns and the quality of the data used in the24

model calibration [2]. Thus, if raw data RD are not validated before they are used for diverse purposes,25

the resulting studies and models could not be representative of the real behavior of the network in26

normal operating conditions. Previous contributions have proposed data validation techniques for27

on-line applications [3,4]. These proposals, however, require large data sets of nominal operating28

conditions to identify a validation model. Therefore, from practical point of view, it makes more sense29

to validate, as a first step, the raw data in any study of WNs.30

In view of the forgoing arguments, this paper presents a semi-automatic procedure for off-line31

validation of raw data acquired from WNs. The procedure, based on Artifical Intelligence tools,32

consists of four steps that require minimal setup and it allows to classify the data associated with33
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the nominal behavior of the network from the data which are generated from abnormal events. The34

procedure is applied to validate data acquired from a real DMA called El Charro which is located in a35

small city in Mexico. It is demonstrated hereafter that it is possible to identify different anomalous36

events which do not correspond to the behavior of the normal consumers.37

2. Case Study: El Charro DMA38

The proposed procedure is applied to a raw database coming from a district metered area (DMA)39

located in a small city in the center part of Mexico. El Charro comprises a middle-class neighborhood, a40

public hospital and a bus station. The EPANET layout of the DMA an their main characteristics are41

presented in Fig. 1.42
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Figure 1. EPANET layout of the DMA El Charro

The raw database or sample set denoted RD is composed of upstream and downstream pressure43

as well as flow-rate data, which were recorded and sent to a website platform from an IoT (Internet44

of Things) station that is located at the inlet of the DMA. The RD corresponds to dates between45

25/06/2019 @ 00:00 and 25/09/2019 @ 00:00. The pressures and flow-rate records were sent to the46

website platform by different non-synchronized telemetry devices with irregular intervals between47

10 and 11 minutes. Thus, the database was pre-processed to have the same dimension with a regular48

(uniform) time separation for the three variables of RD.49

The pre-processing is achieved in two steps. Firstly, the set of samples RD for each month were50

linearly interpolated considering that the estimated values are separated by a regular (uniform) period51

of time τ [5]. Secondly, a univariate test was performed to remove values of the data that lies far52

from the means. This step is designed according to the expert knowledge about the physical variables53

from the Mexican DMA. Here the univariate estimation for the flow rate qk lower than the minimum54

night flow qmin is applied. Thus, qk were replaced by the interpolated value from the previous and55

after values qk−1 and qk+1 respectively. Thus, these preprocessing steps generate the new array56

Ps = [Ps1 , Ps2 , Ps3 ] it is the input array of the validation process with three rows for the three months of57

register data of the DMA.58

3. Clustering procedure59

The unsupervised clustering algorithms can be considered as systematic computational processes60

used to handle huge of data which can be classified according to their similarities and differences61

without a priori knowledge of the classes of groups [6]. Thus, a clustering process can be used in a WN62

to reveal the organization of patterns into groups and to separate normal data from abnormal data.63

The proposed procedure is described in Figure 2. The first step, as usual, involves data64

pre-processing methods to perform the following tasks: normalization, noise filtering, missing data65
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recovering and so on [5]. For the El Charro DMA the pre-processing task was explained in the66

previous section. Feature selection, which is the second step, consists of determining the features of67

the pre-processing data set Ps to be analyzed. In our case, we only considered the straightforward68

values of the variables. Thus, the feature array is given by F = Ps.69

Step 3, which is the main contribution of this paper, consists in the use of unsupervised machine70

learning techniques to do anomaly detection. The goal of the anomaly detection task is to isolate the71

events in the data-set which do not correspond to the normal consumption of the users. This is a72

fundamental problem because if the data-set is not validated then it cannot be used for water modeling73

tasks, i.e. demand modeling, WN model calibration, etc. Finally, in step 4, the resulting clusters that74

represent the normal consumption patterns are integrated into a single data set.75
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Figure 2. Off-line raw data validation procedure

3.1. Clustering patterns with DBSCAN76

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a non-parametric,77

density-based clustering technique [7]. Namely, the goal of the algorithm is to partition the data78

set formed by the feature array F into sub-sets. In this work, an object is understood as a feature79

observation fi ⊂ F for all i = 1, 2, ..., n. This method in particular identifies regions in the data space80

with a high density of objects.81

To define a cluster by considering the n observation set F = {f1, f2, ..., fn} with fi ∈ <m, the82

concept of Neighborhood and Density reachable objects are required [7]83

Definition 1 (Neighborhood of fi). The neighborhood of object fi denoted Di = {fj ∈ F} is defined by the84

set of objects fj such that a proximity measure between fi and fj is satisfied. This means that Di = {fj ∈85

F | ||fj − fi|| < dth} where dth is a user-defined threshold that characterizes the size of the neighborhood. In86

this context, all fj are called neighbors of fi.87

An object f∗i is called core-object if the number of objects in its neighborhood Di is larger than a88

user-defined number MinPts ∈ Z. The rest of objects inside the neighborhood of a core-object are called89

border objects.90

Definition 2 (Density reachable objects). If there exist a set of core-objects {f∗1 , f∗2 , ..., f∗i } which are neighbors91

then any object of their respective neighborhoods D1, D2, ..., Di is density reachable by any of the core-objects.92

Definition 3 (Cluster). In the framework of DBSCAN, a cluster is defined by the set of density reachable93

objects C = D1
⋃

D2
⋃

...
⋃

Di .94

In general, if after processing all objects in F an object is not density reachable it is considered as95

an outlier or unstructured data. From the above definitions one can see that two parameters define a96

cluster: MinPts and dth. The former one defines the minimum number of objects required to consider97

the existence of a cluster, and the latter characterizes how close must be these objects in the data space.98

The DBSCAN algorithm is shown in 1.99

For the application of DBSCAN to data from a DMA we considered that the minimum number of100

observations that form a pattern are defined by the duration of the minimum night flow (MNF) regime101

corresponding to the time period from 3 am to 6 am. Given that the sampling time of our system102
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Data: F, MinPts, dth, C: set of clusters,No: set of noise objects, i: number of clusters
Label all objects as not classified, C = ∅,No = ∅, i = 0;
for fj ∈ F do

if fj is not classified then
DRj = DensReach(fj)

if |DRj|>1 then
Form a new cluster with all density-reachable objects
Label cluster’ objects as classified
Ci = DRj, C = {C, Ci}, i = i + 1

if fj is not a border-object then
No = No ∪ fj

Label fj as classified
end

Algorithm 1: DBSCAN Algorithm

is approximately 10 min a minimum of MinPts = 18 observations is selected such that any cluster103

satisfies the condition |C| ≥ 18. The applied steps for the search of the threshold dth are summarized
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Figure 3. Partial results of parameters and data of the DMA: (a) Sorted objects vs K proximity metric
with a minimum cluster of 18 objects; (b) Preprocessing flow rate considering the MNF for a time
window of 450

104

as follows and the specific graphic for the El Charro is shown in the left plot of Figure 3.105

• Compute the distances of each object fi with respect to its nearest neighbors and sort them in106

ascending order, for all objects.107

• Define the distance di that corresponds to the 18th position of the classification, for all objects.108

• Sort all the measures ds = {d1, d2, ..., dn} according to the magnitudes in descending order and109

plot them according to it respective magnitude.110

• Choose dth = K-metric where the sorted object and the K-metric is given by the first valley.111

4. Results and Discussion112

This section describes the main results of the validation process for the data RD and discuss the113

performance of the proposition by considering the study case. To clearly visualize the effects of data114

management, only short time windows are shown in the figures.115

A time series of 450 interpolated and synchronized values is shown in the right side of Figure 3.116

The blue line corresponds to the value of the MNF regime and data below this value were replaced117

by interpolated data and marked with the symbol ◦ in the graphic. One can see that the circles are118

isolated points and without any dynamic. Thus, these do not correspond to abnormal event.119

By applying the DBSCAN algorithm to all the array F, two clusters were obtained in the data120

space. To clarify the interpretation of the results the projection of the two identified clusters in each121

plane of F are shown in Figure 4. The ◦ symbol in red color denotes an object in the normal cluster122
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and the × symbol in blue color means abnormal event. Thus, the cluster that represents the normal123

consumption is identified and the other cluster is separated with unstructured data that represents124

anomalies. The classified data shown in the three projections indicates the relationship between125

three features of the measured variables: the upstream pressure, which is measured before a pressure126

reducing valve (PRV) installed at the DMA inlet, the downstream pressure, which is measured after127

the PRV, and the flow rate, which is measured after the PRV and whose behavior depends on the128

demand for water by the DMA users.129

The three projections shown in Figure 4, respectively, the following relations: upstream130

pressure-flow rate, downstream pressure-flow rate and downstream pressure-upstream pressure.131

In the left plane it can be noted that there are many data that indicate that the behavior of the flow rate132

is not related with the upstream-pressure normal behavior since it is not feasible a low pressure with a133

relative high flow. This situation is not perceived in the center graph plane, since the number of data134

showing a disassociation between the flow-rate behavior and the downstream- pressure behavior is135

smaller. This is an indicator that an abnormal event is out of the network. Finally, in the right graph136

plane a large amount of data can be seen that highlights an anomalous condition between the upstream137

pressure and the downstream pressure. Thus, it is concluded that the abnormal event is associated138

with a low upstream pressure.139

Figure 4. Data space projections of the features: Normal condition red ◦, Anomalies conditions blue ×
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Figure 5. Evolution of the classified raw data produced by reservoir draining

To analyze the data results in the time domain, windows from the samples 1700 to 2400 identified140

as abnormal data are shown in Figure 5. The abnormal event produced a sharp upstream pressure141

drop and deviations in both directions of the flow rate. On the contrary, the downstream pressure is142

only reduced drastically in a small sample interval. These behaviors of the variables can be diagnosed143

as a reservoir draining. This analysis is coherent with the cluster remarks made by analyzing Figure 4.144

This conclusion was verified with the operator register. Therefore, the tank draining behavior has been145
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isolated from the normal events. This subset of data cannot be used to model the nominal behavior of146

the network. Thus the data corresponding to these time periods should not be used for any study of147

the DMA, except for fault diagnosis purpose.148

Since downstream pressure and flow are measured after a PRV, and since the relationship between149

both variables seems to have only one pattern, one can infer that an anomaly exists before the PRV.150

An explanation for this inference can be found in Fig. 5 b) that shows the behavior of the upstream151

pressure. In particular, it is observed that the upstream pressure drops three times. According to152

the DMA managers, these drops were due to problems to supply the reservoir. More precisely, the153

pumps used to feed the reservoir failed. Fig. 5 c) shows that only one of these three drops affected the154

downstream pressure, what it was thanks to the PRV, which works as long as the upstream pressure is155

greater than the downstream pressure. As can be seen in Figures 5 b) and 5 c), the upstream pressure156

was lower than the downstream pressure only once around the 1800th observation.157

5. Conclusions158

This paper presented an off-line approach to data validation in WN for modeling studies. The159

core of the proposal is the application of an unsupervised classification tool which does not requires160

the features of the different events to be identified. The advantages of the proposal were illustrated161

with a data-sets acquired from a Mexican water management utility. The abnormal events identified162

in the data were validated with the reports of the DMA managers. In particular, the unsupervised163

method allowed the identification of a systematic anomaly: the draining of the reservoir. On the base164

of these results, the network operators concluded the convenience of the pressure reducing valve.165
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