

The 23rd International Electronic Conference on Synthetic Organic Chemistry

Polymers of 4-Thieno[3,2-b]thiophen-3-ylbenzonitrile wit Anthracene and Biphenyl: Electronic and Optoelectronic Properties

> Recep Isci, Ahsen Sare Yalin, Dilara Gunturkun Supervisor: Prof. Dr. Turan OZTURK

Istanbul Technical University Prof. Turan OZTURK'S Organic Materials Chemistry Research Group

- Rich in sulfur
- Good electron donors
- Good electron delocalization
- Building block of many electronic and optoelectronic materials

thieno[3,4-b]thiophene

thieno[3,4-c]thiophene

Applications of Thienothiophene Based Materials

Anthracene

Chemical Structure of Anthracene

Synthesis of Anthracene by Elbs Reaction

- Solid polycyclic aromatic molecule consisting of three fused benzene rings.
- Can tune the molecular packing and charge transport properties.
- π -electron-rich structure for electronic materials.
- Exhibits a blue fluoresence under ultraviolet light.

Biphenyl

Chemical Structure of Biphenyl

- Good for conjugated and ordered packing.
- Has important roles as π conjugated bridge and electron rich donor.
- Could be used for opto and electronic aplications.

Experimental

- Initially, the syntehesis of monoketone **1** was performed.
- Then, thienothiophene (TT) 2 ring was constructed through ring closure of 1.
- Dibromination of the TT gave dibromo-TT **3**.

• Dibromination of anthracene yielded dibromoanthracene 4. In order to make it ready for a Suzuki polymerization in the next step, it was borolated to obtain 5.

Experimental

Similarly, dibromobiphenyl was borolayted to obtain **6** for Suzuki polymerization to obtain the second polymer

Experimental

Two different polymers, including anthracene **P2** and biphenyl **P1** groups, were then obtained through Suzuki polymerization reaction.

Results Obtained Molecules

Polymer of TT-Biphenyl

Polymer of TT-Anthracene

under uv light

under uv light

UV-Visible and Fluorescence of p(TT-Biphenyl) in THF

UV-Visible and Fluorescence of p(TT-Ant) in THF

Electrochemical Proporties of p(TT-Biphenyl)

Electrochemical Proporties of p(TT-Ant)

Optical Proporties of P1 and P2

Polymers	$\lambda_{\rm max} - UV (nm)$	λ_{max} – Floresans (nm)	E _{opt} (eV)
p(TT-Biphenyl) P1	380	480	2.64
p(TT-Ant) P2	260, 400	515	2.61

Electrochemical Proporties of P1 and P2

Polymers	Oxidation Potential (V)	Reduction Potential (V)	E _{electronic} (eV)
p(TT-Biphenyl) P1	1.28	-0.75	2.03
p(TT-Ant) P2	1.42	-0.64	2.06

Conclusion

- In this work, two novel polymers, containing thienothiophene, anthracene and biphenyl groups, were designed and synthesized by Suzuki polymerization.
- Electronic and optical properties of the resultant polymers were investigated.
- UV, emission and CV values indicated that P1 and P2 are suitable materials for electronic and optical applications.