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Abstract: Epilepsy affects approximately 67 million people worldwide with up to 75% from 

developing countries. Diagnosing epilepsy using electroencephalogram (EEG) is complicated due 

to its poor signal-to-noise ratio, high sensitivity to various forms of artifacts, and low spatial 

resolution. Laplacian EEG signal via novel and noninvasive tripolar concentric ring electrodes 

(tEEG) is superior to EEG via conventional disc electrodes due to its unique capabilities which allow 

automatic attenuation of common movement and muscle artifacts. In this work, we apply 

exponentially embedded family (EEF) to show feasibility of automatic detection of gamma band 

high-frequency oscillations (HFOs) in tEEG data from two human patients with epilepsy as a step 

toward the ultimate goal of using the automatically detected HFOs as auxiliary features for seizure 

onset detection to improve diagnostic yield of tEEG for epilepsy. Obtained preliminary results 

suggest the potential of the approach and feasibility of detecting HFOs in tEEG data using the EEF 

based detector with high accuracy. Further investigation on a larger dataset is needed for a 

conclusive proof. 
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1. Introduction 

Epilepsy affects approximately 67 million people worldwide with up to 75% from developing 

countries. Diagnosing epilepsy using electroencephalogram (EEG) is complicated due to its poor 

signal-to-noise ratio, high sensitivity to various forms of artifacts, and low spatial resolution. 

Laplacian EEG signal (tEEG) via novel and noninvasive tripolar concentric ring electrodes (TCREs) 

is superior to EEG via conventional disc electrodes due to its unique capabilities which allow 

automatic attenuation of common movement and muscle artifacts in applications including detection 

of high-frequency oscillations (HFOs) and seizure onset zones [1] and seizure onset detection [2]. In 

[1], detection of HFOs, a promising bio-marker of epileptogenesis and ictogenesis [3], was performed 

manually exposing HFOs in tEEG preceding 100% of seizures. In [2], an exponentially embedded 

family (EEF) based detector was used for automatic detection of seizure onset with 100% accuracy on 

human tEEG data. A detailed review of recent advances in HFO and seizure onset detection based 

on tEEG via TCREs (including detectors based on EEF) on animal model and human data is available 

in [4]. 
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In this work, we apply EEF to automatically detect HFOs in tEEG data from two human patients 

with epilepsy. This preliminary research is important because it allows assessing the potential of 

automatically detecting HFOs in tEEG with the ultimate goal of using them as auxiliary features for 

seizure onset detection to improve diagnostic yield of tEEG for epilepsy. Further investigation on a 

larger dataset is needed for a conclusive proof. 

2. Materials and Methods 

2.1. Patient Recruitment 

Both patients were recruited from the National Institute of Neurology and Neurosurgery 

(NINN), Mexico City, Mexico. Patients have been referred by the epilepsy clinic with the diagnosis 

of drug resistant epilepsy. The recording protocols were approved by the NINN’s Institutional 

Review Board.   

2.2. EEG and tEEG Recording 

The recording protocol was designed to avoid possible interference with the clinical EEG 

recording. To attach conventional disc electrodes, patient’s scalp was cleaned with Nuprep and EEG 

electrodes were placed at the 10-20 International Electrode System locations using Ten-20 paste. 

Collodion was used to hold all the EEG electrodes in place. To record tEEG simultaneously with the 

EEG, TCREs were placed behind the conventional disc electrodes in locations close to the 10-10 sites 

using Ten-20 paste. The ground was placed on the forehead and the reference was placed at the Oz 

location. EEG was recorded with the Comet AS40 system (Grass Technologies, West Warwick, RI, 

USA) at 200 samples per second with the 70 Hz low-pass filter and 60 Hz notch filter active. The tEEG 

data were pre-amplified with the gain equal to 6, amplified, band-pass filtered 1-100 Hz with 60 Hz 

notch filter active, and digitized with an Aura LTM-64 system (Grass Technologies, West Warwick, 

RI, USA) at 200 samples per second. Recording sessions for both patients lasted for about six hours 

and took place around 7:00 am to 1:00 pm. According to the NINN recording protocol patients were 

sleep deprived the night before recording and signed an additional informed consent form for the 

antiepileptic drugs dosage to be reduced by half the day before the recording. Board certified 

neurologists reviewed the recorded data determining the seizure onset time and duration for each 

seizure. 

2.3. HFO Detection Using EEF Test Statistic 

EEG and tEEG data were exported from Twin (Grass Technologies, West Warwick, RI, USA) 

into ASCII text files, imported to Matlab (Mathworks, Natick, MA, USA), and converted to .mat files. 

For tEEG, two bipolar signals recorded for each TCRE were linearly combined into a Laplacian 

estimate [5]. To create an automatic HFO detector EEF was applied to power in individual HFO 

frequency bands (e.g. 60-80 Hz for high gamma HFOs) for individual tEEG channels rather than to 

power across the spectrum and across all the data channels as was done for seizure onset detection 

in [2,6]. These frequency bands were limited in two patients included in this study by the lower 

bound of the high gamma HFOs (>60 Hz) and the upper bound of the band-pass filter (100 Hz). 

Otherwise, EEF implementation is consistent with [2,6]. This included using approximately 10 min 

of the earliest artifact free tEEG data as baseline to calculate the EEF test statistic for the remainder of 

the patient’s recording. EEF test statistic was calculated in increments of data window size equal to 

0.2 s. Simple threshold was used to detect HFO events where EEF test statistic values were 

significantly larger than those corresponding to interictal background tEEG. First, arithmetic mean 

and standard deviation were calculated for normalized EEF test statistic. Next, time periods where 

the EEF test statistic was exceeding its mean plus standard deviation were identified as  

detected HFOs. 
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3. Results 

Representative examples of tEEG recordings obtained in parallel with the clinical EEG for two 

patients are shown in Figures 1 and 2 respectively. Patient in Figure 1 is a 42-year-old woman with 

onset of epilepsy at the age of 9. Having been diagnosed with right temporal lobe epilepsy she 

underwent right temporal lobectomy but seizures persisted. At the time of the study she was on 

clonazepam, lamotrigine and phenytoin. In Figure 1 conventional EEG data (from the bipolar 

montage F8-F4) is on panel A while tEEE data (from TCRE placed directly behind the F8) is on panels 

B through E. Seizure onset for a generalized seizure is around 610 s for panels A-E in Figure 1 as 

evidenced by a marked increase in EEG and tEEG power across the frequency spectrum. A series of 

HFOs in high-gamma band starting approximately 10 min before the seizure onset are clearly visible 

in tEEG but not in EEG. Panels C-E are for the same tEEG segment of 11 s marked by a black line 

segment in panel B at higher temporal resolution. Panel E is an illustration of automatic HFO 

detection with normalized EEF test statistic within the 60–80 Hz frequency band (blue) and mean 

plus standard deviation HFO detection threshold (dotted red). All five HFOs are detected as sharp 

increases in EEF test statistic exceeding the detection threshold.   

 

Figure 1. Example of conventional EEG data (A) and tEEG data via TCRE (B–E) for 42-year-old female 

epilepsy patient: (A) and (B) are time-frequency spectrograms for EEG and tEEG data respectively; 

(C–E) are zoom-in spectrogram, normalized (to [−1, 1]) waveform, and normalized (to [0, 1]) EEF test 

statistic with mean plus standard deviation HFO detection threshold respectively for the same tEEG 

segment of 11 s. 

Patient in Figure 2 is a 45-year-old male with onset of epilepsy at the age of 22. Magnetic 

resonance imaging for this patient revealed left mesial temporal sclerosis and right frontal venous 

angioma. At the time of the recording he was on carbamazepine and lamotrigine. Similar to Figure 1, 

in Figure 2 conventional EEG data (from the bipolar montage Fp2-F4) is on panel A while tEEE data 

(from TCRE placed directly behind the Fp2) is on panels B through E. Seizure onset is around 280 s 

for panels A-E in Figure 1 as evidenced by a marked increase in EEG and tEEG power across the 

frequency spectrum. A series of HFOs in high-gamma band starting approximately 3 min before the 

seizure onset are clearly visible in tEEG but not in EEG. Panels C-E are for the same tEEG segment of 

11 s marked by a black line segment in panel B at higher temporal resolution. Panel E is an illustration 

of automatic HFO detection with normalized EEF test statistic within the 60-80 Hz frequency band 

(blue) and mean plus standard deviation HFO detection threshold (dotted red). Both HFOs are 

detected as sharp increases in EEF test statistic exceeding the detection threshold. 
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Figure 2. Example of conventional EEG data (A) and tEEG data via TCRE (B–E) for 45-year-old male 

epilepsy patient: (A) and (B) are time-frequency spectrograms for EEG and tEEG data respectively; 

(C–E) are zoom-in spectrogram, normalized (to [−1, 1]) waveform, and normalized (to [0, 1]) EEF test 

statistic with mean plus standard deviation HFO detection threshold respectively for the same tEEG 

segment of 11 s. 

4. Discussion 

Preliminary results suggest the potential of the proposed approach and feasibility of detecting 

HFOs in tEEG data using the EEF based detector. In the representative examples for two epilepsy 

patients from Figures 1 and 2 100% of HFOs (7 out of 7) are detected correctly i.e. there are no false 

negative detections. Figure 2 suggests possibility of false positive detections with detection threshold 

being exceeded twice for each HFO. Application of the smoothing algorithm similar to the one from 

[2] where automatic detections separated by less than, for example, the average duration of an HFO 

are counted as a single detection may alleviate this issue. It should also be noted that a very simple 

decision threshold (mean plus standard deviation) has been used in this study. While it may be 

sufficient to achieve 100% accuracy of HFO detection in a couple of representative examples 

provided, a more comprehensive thresholding approach may be needed for a larger dataset. 

Examples for such an approach include an asymptotic threshold based on the assumption of the 

distribution under the null hypothesis being a chi-squared distribution with the number of degrees 

of freedom equal to the number of tEEG channels to integrate used in [6] or an adaptive threshold 

based on the empirical EEF test statistic and given probability of false alarm used in [2]. Finally, in 

both patients, HFOs were clearly visible in tEEG but not in EEG (Figures 1 and 2, panels B and A 

respectively) which is consistent with what was reported in [1]. 

Needless to say, further investigation on a larger dataset is needed for a conclusive proof. To 

fully assess the potential of automatic HFO detection using EEF it is to be performed not just prior to 

clinical seizures but for extended periods of time for epilepsy patients with clinical seizures, patients 

with epileptiform activity but no seizures, and patients with neither epileptiform activity nor seizures 

using non patient-specific model. Other potential directions of future work include applying EEF to 

integrate multiple tEEG channels as was done, for example, for 3 channels in [6] and for 19 channels 

in [2]. However in [1] for 5 epilepsy patients HFOs were present, on average, only in 35.5% of the 

patient's tEEG channels. This percentage may be insufficient for HFOs to be reflected in the EEF 

statistic integrating all of the patients tEEG channels. Same argument can be made for the case of 

applying EEF to power across the frequency spectrum rather than to individual HFO frequency 

bands as was done in this study where detection of high-gamma band HFOs was performed in the 
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frequency band of 60–80 Hz. Finally, drawing a comparison between detections based on EEF test 

statistic as opposed to different signal power metrics could be beneficial. 
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