
proceedings

Proceedings

CNN-Based Deep Architecture for Health Monitoring
of Civil and Industrial Structures using UAVs †

Thomas Harweg 1 , Annika Peters 2 , Daniel Bachmann1 and Frank Weichert 1, *
1 Department of Computer Science, TU Dortmund University, 44227 Dortmund, Germany
2 Faculty of Mechanical Engineering, TU Dortmund University, 44227 Dortmund, Germany
* Correspondence: frank.weichert@tu-dortmund.de; Tel.: +49-231-755-6122
† Presented at the 6th International Electronic Conference on Sensors and Applications,

15–30 November 2019; Available online: https://ecsa-6.sciforum.net/

Published: 14 November 2019

Abstract: Health monitoring of civil and industrial structures has been gaining importance since the
collapse of the bridge in Genoa (Italy). It is vital for the creation and maintenance of reliable infrastructure.
Traditional manual inspections for this task are crucial but time consuming. We present a novel approach
for combining Unmanned Aerial Vehicles (UAVs) and artificial intelligence to tackle the above-mentioned
challenges. Modern architectures in Convolutional Neural Networks (CNNs) were adapted to the special
characteristics of data streams gathered from UAV visual sensors. The approach allows for automated
detection and localisation of various damages to steel structures, coatings and fasteners, e.g. cracks or
corrosion, under uncertain and real-life environments. The proposed model is based on a multi-stage
cascaded classifier to account for the variety of detail level from the optical sensor captured during an
UAV flight. This allows for reconciliation of the characteristics of gathered image data and crucial aspects
from a steel engineer’s point of view. To improve performance of the system and minimise manual
data annotation, we use transfer learning based on the well-known COCO data set combined with field
inspection images. This approach provides a solid data basis for object localisation and classification with
state-of-the-art CNN architectures.

Keywords: health monitoring; civil and industrial structures; convolutional neural networks; unmanned
aerial vehicles

1. Introduction

In 2019 there are 39,671 bridges in road traffic in Germany. In the field of steel- and steel composite
bridges this amounts to a total bridge area of 3 999 000 m2, 65% of these are much older than 20 years.
About 46% of these bridges are in the lower half of the rating scale regarding their status of structure [1].
These figures only concern road bridges. Rail traffic, and accordingly, the rail bridges are not included.
There are further 25,677 (12,2018) bridges, 4,899 of them are steel constructions [2]. The Federal Ministry of
Transport and Digital Infrastructure’s traffic forecast for 2030 states, that there is an increase in 43% in rail
traffic concerning tonne-kilometres. The passenger service on rails should be up by almost 39% [3].

These figures illustrate the importance of a substantial healthy and reliable infrastructure. For
ensuring the continuously increasing road- and rail traffic, there is a regulation for periodic monitoring of
bridges [4–6]. DIN 1076 "Civil Engineering Structures for roads – Monitoring and Examination" [5] regulates
the inspection and control of all bridges concerning road traffic. For rail bridges, Ril 804.80 [4,6] is an
analogue.
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Figure 1. Connections between the different stages in automated bridge inspection

Both rules mandate a building examination every six years. This examination has to be carried
out visually, at a very close distance to the structure, allowing tactile feedback [5,6]. DIN 1076 calls this
examination general inspection (H). Inspection is conducted by qualified specialists. To guarantee complete
access for the specialist, technical devices are necessary. The use of theses big units make (partial) road
closure inevitable and are thus time consuming.

In addition to the described general inspection, DIN 1076 requires a simple inspection (E) every six
years. This should be an extended visual inspection without tools, which is three years shifted to the
general inspection (H). The defects found in the general inspection (H) should be found and compared in
the simple inspection (E). A change of the existing defects is the focal point of this inspection (E). In those
years when there is no general inspection (H) nor a simple inspection (E), an observation (B) is required.
Further, a special investigation (S) is mandatory by order, or after general storms, fires or accidents. These
considerations demonstrate that currently a bridge inspection in Germany is tied to large expenses in
personnel, equipment, and money.

Based on these challenges, the project InÜDosS1 was initiated to automate monitoring, inspection
and documentation of steel constructions. Figure 1 shows the interconnection of the different stages in
our automatic monitoring approach. The scope of the project InÜDosS covers different aspects that arise
in the process of monitoring steel structures with UAVs. This includes data acquisition and 3D model
reconstruction, automatic path planning, and image analysis. In this paper we put our focus on the aspect
of automatic image analysis (outlined in red).

There is a large number of literature on the subject of (semi-) automatic detection of damages on
civial and industrial structures. Koch et al. [7] gave a comprehensive overview of current practice in visual
inspection and damage types of civil structures including associated severity scales. The authors state that
listed defect classes are detectable with computer vision based approaches. Further, the state-of-the-art in
computer vision defect detection and assessment in the pre-DCNN era is presented. As one of the main
open challenges for automatic defect retrieval, an automated process of image and video collection is
identified. Recently Zhang et al. [8] propose vision based damage detection and classification using an
adapted YOLOv3 network and Huethwohl et al. [9] use a multi-classifier for reinforced concrete bridge
defect detection. Furthermore automatic detection of cracks is discussed [10–13]. The novelty of the
presented work besides the definition of a hierarchy of damage classes is, that compliance with the rules

1 InÜDosS - "Inspektion, Überwachung und Dokumentation von stahlbaulichen Strukturen" – Inspection, monitoring and
documentation of steel constructions

2 All images courtesy of PSP – Prof. Sedlacek & Partner, Planung und Entwicklung im Bauwesen, Büro Dortmund
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Figure 2. Example images from the data set2

and regulations of DIN 1076 is discussed. Especially the observations (B) and the simple inspection (E) should
both be performed only visually and without the use of tools (cf. [5]).

We discuss a vision based approach in (semi-) automatic damage detection in bridges and steel
constructions using UAVs. Main Contributions of this work are:

• Development of a semantic classification scheme for bridge inspection in public space, which is
compatible to the specifications of DIN 1076

• Devising a hierarchy of defect classes
• Implementation and evaluation of a corresponding cascaded classifier based on state-of-the-art CNN

object detection

2. Materials and Methods

The special nature of the image data gathered demands for a custom approach to tackle the problem.
The images at hand show great variety concerning the characteristics of the structures being investigated
(cf. Figure 2), as well as the level of detail. Depending on the distance between the UAV and the examined
object, the different types of damages only add to the complexity of the problem. Our approach is based on
a hierarchy on a conceptual level, as displayed in Figure 3, which we directly transfer to our computational
method. The proposed hierarchy consists of two stages. At the first stage we aim to identify relevant
structures. Roughly speaking, this comprises all (coated) supporting steel structures. If such a structure is
identified, it will then be analysed for damages. At the second stage, we consider two main categories of
potential damage, coating damages and faulty fasteners. Coating damages are further subdivided into
blistering, cracks, missing coating, and corrosion. Fasteners can be intact, defective (e.g. loose nuts), tilted,
missing, or corroded.

We transfer this concept directly to the computational domain by using a two-stage convolutional
neural network (CNN) approach, based on Mask-RCNN [14]. We use three separate instances of the
Mask-RCNN (two on the second stage). All three networks use the ResNet50-backbone [15] and Feature
Pyramid Networks [16] (FPN). Our implementation is based implementation by Facebook Research [17]. The
proposed two-stage architecture is shown in Figure 4. The first network (φ0

st) is trained to recognise coated
steel structures, resulting in bounding boxes of recognised structures. These bounding boxes are used as
regions of interest (ROI) to restrict networks of the second stage. In the second stage, we run two separate
networks, one for coating damages (φ1

co) and the other one (φ1
f a) for fastener damages.

More formally, for an input image I0, the first-stage detector φ0
st(I0) determines a set R0

st =

{B0
0, . . . , B0

n} of bounding boxes B0
i which define the areas of relevant structures. For each bounding

box B0
i , the corresponding sub-image I1

i is cut from the full image I0, resulting in the set of images
I1 = {I1

0 , . . . , I1
n}.

Second-stage detectors φ1
co) and φ1

f a are then applied to each sub-image I1
i , again

resulting in sets of bounding boxes R1
co = {{B1,co

0,0 , . . . , B1,co
0,m0
}, . . . , {B1,co

n,0 , . . . , B0,co
n,mn}} and R1

f a =
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Figure 3. Aspects of bridge inspection and proposed semantic hierarchy. Components relevant to this
paper are highlighted in colour

{{B1, f a
0,0 , . . . , B1, f a

0,k0
}, . . . , {B1, f a

0,n , . . . , B1, f a
n,kn
}}. All the results contained in R1 = R1

co ∪ R1
f a are then projected

back onto the input image I0, giving the final prediction results R0.
As a data basis, we used approximately 1000 images of steel constructions, consisting mostly of

bridges and supporting steel constructions, many of them showing at least one type of damage we are
considering. These images are divided into three categories, steel structures, coating damages, and fasteners.
Note that the images of the three data sets are not necessarily disjoint, but the corresponding annotations
are. To reduce computational costs while increasing accuracy, we use transfer learning. We initialise all
three networks with network weights pre-trained on the COCO (Common Objects in COntext) data set [18].
We trained each network for 80 epochs, at a learning rate of 2× 10−3 and a batch size of 2. Further, an initial
warm-up phase of 500 iterations (batches) is used to overcome difficulties which may arise in early phases
of optimisation [19]. During training, validation tests were performed each epoch. Data augmentation
included horizontal and vertical flip, as well as variation in brightness, contrast, and saturation. Data sets
were split into 11 parts of (near-)equal size. One part was used as a test set and the other ten parts for
cross-validation (10-fold split).

3. Results

Figure 2 shows examples of the images used in this paper. For each validation test, we determined
the model(s) with the best AP, AP50, and AP75, respectively, Figure 5a shows the average precision on
the validation set of the ten-fold split (cf. section 2). This image shows the evalution for the first stage
(steel constructions). To make results of the cascaded and plain version comparable, we first apply the
trained detector for supporting structures and then apply the same model as in the simple step on all areas
suggested by the first detector. The results of this step are then projected back on the original (full) image.

Figure 4. Two-stage CNN pipeline: (coated) steel structures and their positions are identified and errors are
classified on the associated bounding boxes
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This allows for directly comparing the results of the plain and the cascaded detector. We selected models
according to the best performance regarding average precision.

To test our proposed two stage method, we exemplarily performed tests regarding the second-tier
category coating in a simple version and a cascaded version. For the second level coating, we additionally
trained networks on the same data but with reduced number of classes, in order to test how well the
network is able to only recognise and spot damages without further classifying them.In these tests we
used the classes intact and defective.

For the simple version, we applied the trained model of the given category on the corresponding test
data set as is common practice. In this case, the detector is simply applied to the whole image. Figure 5b
shows IOUs on image level for a test set of 70 images. The cascaded version shows an improvement of
nine percent towards the plain version. Figure 6 shows detection results for coatings and fasteners. Red
boxes indicate detection results for the first stage (steel constructions), while green boxes and outlines
show results of the second stage (coating or fasteners).

4. Discussion and Conclusions

Detection of steel structures works very well, while detection and especially classification of damages
is more difficult. This is mainly due to the fact that the data and the semantic categories are inherently
difficult. Some damages are very subtle and hard to spot from images, even for an expert, while others
depend on a significant amount of context information and interpretation. Furthermore, classes are
not always clearly distinguishable, and objects may adhere to several classes at once (fasteners may be
defective and corroded, for example). Overall spotting works well, and classification may be sensible,
even when differing from ground truth annotation. This applies when classes overlap, or classification by
a human expert is fuzzy by itself.

An automatic visual detection of defects on steel bridges complies the requirements of DIN 1076 and
Ril 804.80. Required inspections are, with the exception of the main inspection (H), only based on visual
monitoring. Numerous areas of the bridge cannot be reached and inspected without big units like aerial
work platforms or units to inspect bridges from below. For observations (B) and simple inspections (E) these
tools are not intended. Thus, a periodic flyover with an UAV could improve and specify both inspections
(B, E). Further, existing defects are observed and checked regularly and small changes would be detected
immediately.
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Figure 6. Cascaded prediction examples: red boxes indicate results from the first stage, green boxes and
outlines show results from the second stage

The presented work shows the potential of the developed approach in designing an DIN 1076
compliant visual inspection pipeline for automated damage detection. Due to more precise annual
inspections by UAV, which would replace the superficial and visual inspections without tools (B, E), a
process of change of a defect would strike immediately and maintenance measures can be taken. The
structure and its durability could be improved and maximised. This presents a further step towards smart
city infrastructures.
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